ﻻ يوجد ملخص باللغة العربية
Spatial intermittency in decaying kinetic Alfven wave turbulence is investigated to determine if it produces non Gaussian density fluctuations in the interstellar medium. Non Gaussian density fluctuations have been inferred from pulsar scintillation scaling. Kinetic Alfven wave turbulence characterizes density evolution in magnetic turbulence at scales near the ion gyroradius. It is shown that intense localized current filaments in the tail of an initial Gaussian probability distribution function possess a sheared magnetic field that strongly refracts the random kinetic Alfven waves responsible for turbulent decorrelation. The refraction localizes turbulence to the filament periphery, hence it avoids mixing by the turbulence. As the turbulence decays these long-lived filaments create a non Gaussian tail. A condition related to the shear of the filament field determines which fluctuations become coherent and which decay as random fluctuations. The refraction also creates coherent structures in electron density. These structures are not localized. Their spatial envelope maps into a probability distribution that decays as density to the power -3. The spatial envelope of density yields a Levy distribution in the density gradient.
Non-Gaussian statistics of large-scale fields are routinely observed in data from atmospheric and oceanic campaigns and global models. Recent direct numerical simulations (DNSs) showed that large-scale intermittency in stably stratified flows is due
The notion of self-similar energy cascades and multifractality has long since been connected with fully developed, homogeneous and isotropic turbulence. We introduce a number of amendments to the standard methods for analysing the multifractal proper
Guided by the duality of turbulence (random versus coherent we seek coherent structures in the turbulent velocity field of molecular clouds, anticipating their importance in cloud evolution. We analyse a large map (40 by 20) obtained with the HERA mu
The small-scale turbulent dynamo in the high Prandtl number regime is described in terms of the one-point Fourier space correlators. The second order correlator of this kind is the energy spectrum and it has been previously studied in detail. We exam
We characterize statistical properties of the flow field in developed turbulence using concepts from stochastic thermodynamics. On the basis of data from a free air-jet experiment, we demonstrate how the dynamic fluctuations induced by small-scale in