ﻻ يوجد ملخص باللغة العربية
Mayall II = G1 is one of the most luminous globular clusters (GCs) known in M31. New deep, high-resolution observations with the Advanced Camera for Surveys on the {sl Hubble Space Telescope} are used to provide accurate photometric data to the smallest radii yet. In particular, we present the precise variation of ellipticity and position angle, and of surface brightness for the core of the object. Based on these accurate photometric data, we redetermine the structural parameters of G1 by fitting a single-mass isotropic King model. We derive a core radius, $r_c=0.21pm0.01arcsec (=0.78pm0.04 rm{pc})$, a tidal radius, $r_t=21.8pm1.1arcsec (=80.7pm3.9 rm{pc})$, and a concentration index $c=log (r_t/r_c)=2.01pm0.02$. The central surface brightness is 13.510 mag arcsec$^{-2}$. We also calculate the half-light radius, at $r_h=1.73pm0.07arcsec(=6.5pm0.3 rm{pc})$. The results show that, within 10 core radii, a King model fits the surface brightness distribution well. We find that this object falls in the same region of the $M_V$ vs. $log R_h$ diagram as $omega$ Centauri, M54 and NGC 2419 in the Milky Way. All three of these objects have been claimed to be the stripped cores of now defunct dwarf galaxies. We discuss in detail whether GCs, stripped cores of dwarf spheroidals and normal dwarf galaxies form a continuous distribution in the $M_V$ versus $log R_h$ plane, or if GCs and dwarf spheroidals constitute distinct classes of objects; we present arguments in favour of this latter view.
We analyze post-refurbishment Hubble Space Telescope images of four globular clusters in M31. The ability to resolve stars to below the horizontal branch permits us to use star counts to extend the surface brightness profiles determined using apertur
In this paper, we present surface brightness profiles for 79 globular clusters in M31, using images observed with {it Hubble Space Telescope}, some of which are from new observations. The structural and dynamical parameters are derived from fitting t
The King and the EFF (Elson, Fall & Freeman 1987) analytical models are employed to determine the structural parameters of star clusters using an 1-D surface brightness profile fitting method. The structural parameters are derived and a catalogue is
We present structural parameters for 51 compact star clusters from the survey of star clusters conducted in the South-West field of the M31 disk by Kodaira et al. (2004). Structural parameters of the clusters were derived by fitting the 2-D King and
G1, also known as Mayall II, is one of the most massive star clusters in M31. Its mass, ellipticity, and location in the outer halo make it a compelling candidate for a former nuclear star cluster. This paper presents an integrated light abundance an