ترغب بنشر مسار تعليمي؟ اضغط هنا

The micro-Jy Radio Source Population: the VLA-CDFS View

97   0   0.0 ( 0 )
 نشر من قبل Paolo Padovani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Padovani




اسأل ChatGPT حول البحث

We analyse the 267 radio sources from our deep (flux limit of 42 microJy at the field center at 1.4 GHz) Chandra Deep Field South 1.4 and 5 GHz VLA survey. The radio population is studied by using a wealth of multi-wavelength information, including morphology and spectral types, in the radio, optical, and X-ray bands. The availability of redshifts for ~ 70% of our sources allows us to derive reliable luminosity estimates for the majority of the objects. Contrary to some previous results, we find that star-forming galaxies make up only a minority (~ 1/3) of sub-mJy sources, the bulk of which are faint radio galaxies, mostly of the Fanaroff-Riley I type.



قيم البحث

اقرأ أيضاً

189 - P. Tozzi 2009
We present the multiwavelength properties of 266 cataloged radio sources identified with 20 and 6 cm VLA deep observations of the CDFS at a flux density limit of 42 mu Jy at the field centre at 1.4 GHz. These new observations probe the faint end of b oth the star formation and radio galaxy/AGN population. X-ray data, including upper limits, turn out to be a key factor in establishing the nature of faint radio sources. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub--millijansky sky, contrary to some previous results. We have also uncovered a population of distant AGN systematically missing from many previous studies of sub-millijansky radio source identifications. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. We also find that radio detected, X-ray AGN are not more heavily obscured than the X-ray detected AGN. This argues against the use of radio surveys as an efficient way to search for the missing population of strongly absorbed AGN.
77 - P.N. Best 2001
An extremely deep 5 GHz radio observation is presented of the rich cluster MS1054-03 at redshift z=0.83. 34 radio sources are detected down to a 32 micro-Jy (6 sigma), compared to about 25 expected from previous blank field radio source count determi nations; the sources giving rise to these excess counts lie within 2 arcmins (700 kpc) of the cluster centre. Existing imaging and spectroscopy has provided optical identifications for 21 of the radio sources and redshifts for 11, of which 8 are confirmed cluster members. 4 of these 8 confirmed cluster sources are associated with close galaxy pairs (10-25 kpc projected offset) of similar magnitude, implying that the radio source may be triggered by an interaction. However, although MS1054-03 has a very high fraction (17%) of on-going mergers (separations <~ 10 kpc), no radio emission is detected towards any of these merger events, setting a mean upper limit of 10 Msun/yr for any star formation associated with these mergers. This supports a hypothesis that low luminosity radio sources may be onset by initial weak interactions rather than direct mergers. The host galaxies of the other four confirmed cluster radio sources are all isolated, and show a range of morphologies from early-type to Sc. A comparison between the emission line and radio luminosities suggests that two of these four radio sources are low-luminosity AGN, whilst for at least one of the other two the radio emission is associated with on-going star formation. All of the radio sources associated with the galaxy pairs appear more likely AGN than starburst origin. The overall proportion of radio sources associated with AGN in this cluster (>75%) is higher than at these flux density levels in the field (40-50%).
119 - C.L. Carilli 2008
We present an analysis of the radio properties of large samples of Lyman Break Galaxies (LBGs) at $z sim 3$, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the $z sim 3$ LBGs (U-band drop-outs), with a 1.4 GHz flux density of $0.90 pm 0.21 mu$Jy. The stacked emission is unresolved, with a size $< 1$, or a physical size $< 8$kpc. The total star formation rate implied by this radio luminosity is $31pm 7$ $M_odot$ year$^{-1}$, based on the radio-FIR correlation in low redshift star forming galaxies. The star formation rate derived from a similar analysis of the UV luminosities is 17 $M_odot$ year$^{-1}$, without any correction for UV dust attenuation. The simplest conclusion is that the dust attenuation factor is 1.8 at UV wavelengths. However, this factor is considerably smaller than the standard attenuation factor $sim 5$, normally assumed for LBGs. We discuss potential reasons for this discrepancy, including the possibility that the dust attenuation factor at $z ge 3$ is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are: (i) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift, or (ii) cosmic ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a submm galaxy).
135 - P. Padovani 2008
We present a detailed analysis of 256 radio sources from our deep (flux density limit of 42 microJy at the field centre at 1.4 GHz) Chandra Deep Field South 1.4 and 5 GHz VLA survey. The radio population is studied by using a wealth of multi-waveleng th information in the radio, optical, and X-ray bands. The availability of redshifts for ~ 80% of the sources in our complete sample allows us to derive reliable luminosity estimates for the majority of the objects. X-ray data, including upper limits, for all our sources turn out to be a key factor in establishing the nature of faint radio sources. Due to the faint optical levels probed by this study, we have uncovered a population of distant Active Galactic Nuclei (AGN) systematically missing from many previous studies of sub-millijansky radio source identifications. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub-millijansky sky, contrary to some previous results. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. The ratio of radio to optical luminosity depends more on radio luminosity, rather than being due to optical absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا