ﻻ يوجد ملخص باللغة العربية
Using the CHARA Array and the Palomar Testbed Interferometer, the chemically peculiar star $lambda$ Bo{o}tis has been spatially resolved. We have measured the limb darkened angular diameter to be $theta_{LD} = 0.533pm0.029$ mas, corresponding to a linear radius of $R_{star} = 1.70 pm 0.10 R_odot$. The measured angular diameter yields an effective temperature for $lambda$ Boo of $T_{eff} = 8887 pm 242$ K. Based upon literature surface gravity estimates spanning $log{(g)} = 4.0-4.2$ $[rm{cm s}^{-rm{2}}]$, we have derived a stellar mass range of $M_{star} = 1.1 - 1.7$ $M_odot$. For a given surface gravity, the linear radius uncertainty contributes approximately $sigma(M_star) = 0.1-0.2 M_odot$ to the total mass uncertainty. The uncertainty in the mass (i.e., the range of derived masses) is primarily a result of the uncertainty in the surface gravity. The upper bound of our derived mass range ($log(g)=4.2, M_star = 1.7pm0.2 M_odot$) is consistent with 100-300 MYr solar-metallicity evolutionary models. The mid-range of our derived masses ($log(g)=4.1, M_star = 1.3pm0.2 M_odot$) is consistent with 2-3 GYr metal-poor evolutionary models. A more definitive surface gravity determination is required to determine a more precise mass for $lambda$ Boo.
Observing planetary auroral radio emission is the most promising method to detect exoplanetary magnetic fields, the knowledge of which will provide valuable insights into the planets interior structure, atmospheric escape, and habitability. We presen
We find the angular diameter of R Doradus to be 57 +/- 5 mas, exceeding that of Betelgeuse and implying that R Dor is larger in apparent size than every star except the Sun. R Dor is shown to be closely related to the Mira variables. We estimate an e
The bright, well-known K5 giant Aldebaran, alpha Tau, is probably the star with the largest number of direct angular diameter determinations, achieved over a long time by several authors using various techniques. In spite of this wealth of data, or p
We present an analysis of a deep, 172 ks Chandra observation of the Large Area Lyman Alpha Survey (LALA) Bo{o}tes field, obtained with the Advanced CCD Imaging Spectrometer (ACIS-I) on the Chandra X-ray Observatory. This is one of the deepest Chandra
The local expansion rate of the Universe is parametrized by the Hubble constant, $H_0$, the ratio between recession velocity and distance. Different techniques lead to inconsistent estimates of $H_0$. Observations of Type Ia supernovae (SNe) can be u