ﻻ يوجد ملخص باللغة العربية
Markarian 421 (Mrk 421) was the first blazar detected at gamma-ray energies above 300 GeV, and it remains one of only twelve TeV blazars detected to date. TeV gamma-ray measurements of its flaring activity and spectral variability have placed constraints on models of the high-energy emission from blazars. However, observations between 50 and 300 GeV are rare, and the high-energy peak of the spectral energy distribution (SED), predicted to be in this range, has never been directly detected. We present a detection of Mrk 421 above 100 GeV as made by the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) during a multiwavelength campaign in early 2004. STACEE is a ground-based atmospheric Cherenkov telescope using the wavefront sampling technique to detect gamma rays at lower energies than achieved by most imaging Cherenkov telescopes. We also outline a method for reconstructing gamma-ray energies using a solar heliostat telescope. This technique was applied to the 2004 data, and we present the differential energy spectrum of Mrk 421 above 130 GeV. Assuming a differential photon flux dN/dE proportional to E^-a, we measure a spectral index a = 2.1 +/- 0.2 (statistical) +0.2/-0.1 (systematic). Finally, we discuss the STACEE spectrum in the context of the multiwavelength results from the same epoch.
The gamma-ray emission of the blazar Markarian 421 above 250 GeV has been observed by the CAT Cherenkov imaging telescope since December, 1996. We report here results on the source variability up to April, 1998, with emphasis on the 1998 campaign. Fo
Markarian 421 (Mrk 421) is a high-synchrotron-peaked blazar showing relentless variability across the electromagnetic spectrum from radio to gamma-rays. We use over 7-years of radio and GeV observations to study the correlation and connected variabil
The Very High Energy (VHE) gamma-ray emission of the closest BL Lacertae objects Markarian 501 and Markarian 421 has been observed by the CAT telescope in 1997 and 1998. In 1997 Mrk 501 exhibited a remarkable series of flares, with a VHE emission pea
Markarian 421 was the first extragalactic source to be detected with high statistical certainty at TeV energies. The Whipple Observatory gamma-ray telescope has been used to observe the Active Galactic Nucleus, Markarian 421 in 1996 and 1997. The rap
Exceptionally strong and long lasting flaring activity of the blazar Markarian 421 (Mrk 421) occurred between January and March 2001. Based on the excellent signal-to-noise ratio of the data we derive the energy spectrum between 260 GeV - 17 TeV with