ﻻ يوجد ملخص باللغة العربية
Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 um silicate feature peak-to-continuum and 11.3-to-9.8 um flux ratios, is inversely proportional to log L_star. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R_10, of the 10 um silicate emission zone in the disk goes as (L_star/L_sun)^0.56, with slight variations depending on disk geometry (flaring angle, inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a grain size dependence on luminosity. Combined with the fact that R_10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminositysources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T>800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands.
We present mid-infrared photometry of three very young brown dwarfs located in the $rho$ Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained with the Subaru 8-meter telescope. All three sources were detected at 8.6 and 11.7$mu$m, confirmin
The flattening of the 10mu silicate emission feature observed in the spectra of T Tauri and Herbig Ae/Be stars is usually interpreted as an indicator of grain growth. We show in this paper that a similar behaviour of the feature shape occurs when the
Mid-IR water lines from protoplanetary disks around T Tauri stars have a detection rate of 50%. Models have identified multiple physical properties of disks such as dust-to-gas mass ratio, dust size power law distribution, disk gas mass, disk inner r
The increasing number of newly detected exoplanets at short orbital periods raises questions about their formation and migration histories. A particular puzzle that requires explanation arises from one of the key results of the Kepler mission, namely
We measure the 10 and $18mu$m silicate features in a sample of 67 local ($z<0.1$) type 1 active galactic nuclei (AGN) with available {it Spitzer} spectra dominated by non-stellar processes. We find that the $10mu$m silicate feature peaks at $10.3^{+0