ﻻ يوجد ملخص باللغة العربية
We have analysed deep R-band images, down to a limiting surface brightness of 26.5 R-mag arcsec$^{-2}$ (equivalent to ~28 B-mag arcsec$^{-2}$), of 5 cD galaxies to determine the shape of the surface brightness profiles of their extended stellar envelopes. Both de Vaucouleurs R^{1/4} model and Sersics R^{1/n} model, on their own, provide a poor description of the surface brightness profiles of cD galaxies. This is due to the presence of outer stellar envelopes, thought to have accumulated over the merger history of the central cluster galaxy and also from the tidal stripping of galaxies at larger cluster radii. We therefore simultaneously fit two Sersic functions to measure the shape of the inner and outer components of the cD galaxies. We show that, for 3 out of our 5 galaxies, the surface brightness profiles are best fit by an inner Sersic model, with indices n~1-6, and an outer exponential component. For these systems, the galaxy-to-envelope size ratio is 0.1 - 0.4 and the contribution of the stellar envelope to the total R-band light (i.e. galaxy + envelope) is around 60 to 80 per cent (based on extrapolation to a 300 kpc radius). The exceptions are NGC 6173, for which our surface brightness profile modelling is consistent with just a single component (i.e. no envelope) and NGC 4874 which appears to have an envelope with a de Vaucouleurs, rather than exponential, profile.
We examine the outskirts of galaxy clusters in the C-EAGLE simulations to quantify the `edges of the stellar and dark matter distribution. The radius of the steepest slope in the dark matter, commonly used as a proxy for the splashback radius, is loc
Observations of 170 local ($zlesssim0.08$) galaxy clusters in the northern hemisphere have been obtained with the Wendelstein Telescope Wide Field Imager (WWFI). We correct for systematic effects such as point-spread function broadening, foreground s
The largest stellar halos in the universe are found in massive galaxy clusters, where interactions and mergers of galaxies, along with the cluster tidal field, all act to strip stars from their host galaxies and feed the diffuse intracluster light (I
Using N-body simulations, we have modeled the production and evolution of diffuse, low surface brightness intracluster light (ICL) in three simulated galaxy clusters. Using an observational definition of ICL to be luminosity at a surface brightness m
We present N-body simulations of groups of galaxies with a number of very different initial conditions. These include spherical isotropic, nonspherical anisotropic collapses and virialised spherical systems. In all cases but one the merging instabili