ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma Ray Bursts Flares detected and observed by the Swift Satellite

77   0   0.0 ( 0 )
 نشر من قبل Dino Fugazza
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of flares with the Swift satellite triggered a lot of bservational and theoretical interest in these phenomena. As a consequence a large analysis effort started within the community to characterize the phenomenon and at the same time a variety of theoretical speculations have been proposed to explain it. In this presentation we discuss part of the results we obtained analyzing a first statistical sample of GRBs observed with Swift. The first goal of this research is very simple: derive those observational properties that could distinguish between internal and external shock and between an ever active central engine and delayed shocks (refreshing) related to a very small initial Lorentz bulk factor. We discuss first the method of analysis and the morphology evidencing the similarities such flares have with the prompt emission pulses. We conclude that GRB flares are due to internal shocks and leave still open the question of whether or not the central engine is active for a time of the order of 105 seconds after the prompt emission.



قيم البحث

اقرأ أيضاً

We present the results of sixteen Swift-triggered GRB follow-up observations taken with the VERITAS telescope array from January, 2007 to June, 2009. The median energy threshold and response time of these observations was 260 GeV and 320 s, respectiv ely. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter time scale determined by the maximum VERITAS sensitivity to a burst with a t^-1.5 time profile. This temporal model is characteristic of GRB afterglows with high-energy, long-lived emission that have been detected by the Large Area Telescope (LAT) on-board the Fermi satellite. No significant VHE gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light (EBL) and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.
111 - A. D. Falcone 2007
Observations of gamma ray bursts (GRBs) with Swift produced the initially surprising result that many bursts have large X-ray flares superimposed on the underlying afterglow. The flares were sometimes intense, had rapid rise and decay phases, and occ urred late relative to the ``prompt phase. Some remarkable flares are observed with fluence comparable to the prompt GRB fluence. Many GRBs have several flares, which are sometimes overlapping. Short, intense, repetitive, and late flaring can be most easily understood within the context of the standard fireball model with the internal engine that powers the prompt GRB emission in an active state at late times. However, other models for flares have been proposed. Flare origin can be investigated by comparing the flare spectra to that of the afterglow and the initial prompt emission. In this work, we have analyzed all significant X-ray flares from the first 110 GRBs observed by Swift. From this sample 33 GRBs were found to have significant X-ray flares, with 77 flares that were detected above the 3$sigma$ level. In addition to temporal analysis presented in a companion paper, a variety of spectral models have been fit to each flare. In some cases, we find that the spectral fits favor a Band function model, which is more akin to the prompt emission than to that of an afterglow. We find that the average fluence of the flares is 2.4e-7 erg/cm^2/s in the 0.2-10 keV energy band, which is approximately a factor of ten below the average prompt GRB fluence. These results, when combined with those presented in the companion paper on temporal properties of flares, supports the hypothesis that most X-ray flares are late-time activity of the internal engine that spawned the initial GRB; not an afterglow related effect.
We present the first systematic investigation of the morphological and timing properties of flares in GRBs observed by Swift/XRT. We consider a large sample drawn from all GRBs detected by Swift, INTEGRAL and HETE-2 prior to 2006 Jan 31, which had an XRT follow-up and which showed significant flaring. Our sample of 33 GRBs includes long and short, at low and high redshift, and a total of 69 flares. The strongest flares occur in the early phases, with a clear anti-correlation between the flare peak intensity and the flare time of occurrence. Fitting each X-ray flare with a Gaussian model, we find that the mean ratio of the width and peak time is <Delta t / t > = 0.13+/-0.10, albeit with a large scatter. Late flares at times > 2000 seconds have long durations, Delta t>300 s, and can be very energetic compared to the underlying continuum. We further investigated if there is a clear link between the number of pulses detected in the prompt phase by BAT and the number of X-ray flares detected by XRT, finding no correlation. However, we find that the distribution of intensity ratios between successive BAT prompt pulses and that between successive XRT flares is the same, an indication of a common origin for gamma-ray pulses and X-ray flares. All evidence indicates that flares are indeed related to the workings of the central engine and, within the standard fireball scenario, originate from internal shocks rather than external shocks. While all flares can be explained by long-lasting engine activity, 29/69 flares may also be explained by refreshed shocks. However, 10 can only be explained by prolonged activity of the central engine.
Until 6 October 2005 sixteen redshifts have been measured of long gamma-ray bursts discovered by the Swift satellite. Further 45 redshifts have been measured of the long gamma-ray bursts discovered by other satellites. Here we perform five statistica l tests comparing the redshift distributions of these two samples assuming - as the null hypothesis - identical distribution for the two samples. Three tests (Students $t$-test, Mann-Whitney test, Kolmogorov-Smirnov test) reject the null hypothesis on the significance levels between 97.19 and 98.55%. Two different comparisons of the medians show extreme $(99.78-99.99994)$% significance levels of rejection. This means that the redshifts of the Swift sample and the redshifts of the non-Swift sample are distributed differently - in the Swift sample the redshifts are on average larger. This statistical result suggests that the long GRBs should on average be at the higher redshifts of the Swift sample.
276 - Lang Shao 2011
In an effort to understand the puzzle of classifying gamma-ray bursts (GRBs), we perform a systematic study of {it Swift} GRBs and investigate several short GRB issues. Though short GRBs have a short ($lesssim2$ s) prompt duration as monitored by the Burst Alert Telescope, the composite light curves including both the prompt and afterglow emission suggest that most of the short GRBs have a similar radiative feature to long GRBs. Further, some well-studied short GRBs might also have an intrinsically long prompt duration, which renders them as a type of short GRB imposters. Genuine short GRBs detected by {it Swift} might be rare that discriminating the observed short GRBs is, not surprisingly, troublesome. In particular, the observational biases in the host identification and redshift measurement of GRBs should be taken with great caution. The redshift distribution which has been found to be different for long and short GRBs might have been strongly affected by the measurement methods. We find that the redshifts measured from the presumed host galaxies of long and short GRBs appear to have a similar distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا