ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative transfer effects on Doppler measurements as sources of surface effects in sunspot seismology

47   0   0.0 ( 0 )
 نشر من قبل Paul Rajaguru
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.P. Rajaguru




اسأل ChatGPT حول البحث

We show that the use of Doppler shifts of Zeeman sensitive spectral lines to observe wavesn in sunspots is subject to measurement specific phase shifts arising from, (i) altered height range of spectral line formation and the propagating character of p mode waves in penumbrae, and (ii) Zeeman broadening and splitting. We also show that these phase shifts depend on wave frequencies, strengths and line of sight inclination of magnetic field, and the polarization state used for Doppler measurements. We discuss how these phase shifts could contribute to local helioseismic measurements of surface effects in sunspot seismology.



قيم البحث

اقرأ أيضاً

264 - S.P. Rajaguru 2008
Time-distance helioseismic measurements in surface- and deep-focus geometries for wave-paths that distinguish surface magnetic contributions from those due to deeper perturbations beneath a large sunspot are presented and analysed. Travel times showi ng an increased wave speed region extending down to about 18 Mm beneath the spot are detected in deep-focus geometry that largely avoids use of wave field within the spot. Direction (in- or out-going wave) and surface magnetic field (or focus depth) dependent changes in frequency dependence of travel times are shown and identified to be signatures of wave absorption and conversion in near surface layers rather than that of shallowness of sunspot induced perturbations.
46 - A. Maselli SISSA 2005
Strong observational evidence for a fluctuating ultraviolet background (UVB) has been accumulating through a number of studies of the HI and HeII Lya forest as well as accurate IGM metallicity measurements. UVB fluctuations could arise both from the inhomogeneous distribution of the ionizing sources and/or from radiative transfer (RT) through the filamentary IGM. In this study we investigate, via numerical simulations, the role of RT effects such as shadowing, self-shielding and filtering of the ionizing radiation, in giving raise to a fluctuating UVB. We focus on possible detectable signatures of these effects on quantities derived from Lya forest spectra, as photoionization rate fluctuations, eta parameter (the HeII to HI column density ratio) distributions and the IGM temperature at redshift about 3. We find that RT induces fluctuations up to 60% in the UVB, which are tightly correlated to the density field. The UVB mean intensity is progressively suppressed toward higher densities and photon energies above 4 Ryd, due to the high HeII opacity. Shielding of overdense regions (Delta > 5) from cosmic HeII ionizing radiation, produces a decreaseing trend of eta with overdensity. Furthermore we find that the mean eta value inferred from HI-HeII Lya forest observations can be explained only by properly accounting for the actual IGM opacity. We outline and discuss several implications of our findings.
Twisted two-dimensional bilayer materials exhibit many exotic physical phenomena. Manipulating the twist angle between the two layers enables fine control of the physical structure, resulting in development of many novel physics, such as the magic-an gle flat-band superconductivity, the formation of moire exciton and interlayer magnetism. Here, combined with analogous principles, we study theoretically the near-field radiative heat transfer (NFRHT) between two twisted hyperbolic systems. This two twisted hyperbolic systems are mirror images of each other. Each twisted hyperbolic system is composed of two graphene gratings, where there is an angle {phi} between this two graphene gratings. By analyzing the photonic transmission coefficient as well as the plasmon dispersion relation of twisted hyperbolic system, we prove that the topological transitions of the surface state at a special angle (from open (hyperbolic) to closed (elliptical) contours) can modulate efficiently the radiative heat transfer. Meanwhile the role of the thickness of dielectric spacer and vacuum gap on the manipulating the topological transitions of the surface state and the NFRHT are also discussed. We predict the hysteresis effect of topological transitions at a larger vacuum gap, and demonstrate that as thickness of dielectric spacer increase, the transition from the enhancement effect of heat transfer caused by the twisted hyperbolic system to a suppression. This technology could novel mechanism and control method for NFRHT, and may open a promising pathway for highly efficient thermal management, energy harvesting, and subwavelength thermal imaging.
169 - Zheng Zheng 2010
We study the clustering properties of z~5.7 Lyman-alpha emitters (LAEs) in a cosmological reionization simulation with a full Lya radiative transfer calculation. Lya radiative transfer substantially modifies the intrinsic Lya emission properties, com pared to observed ones, depending on the density and velocity structure environment around the Lya emitting galaxy. This environment-dependent Lya selection introduces new features in LAE clustering, suppressing (enhancing) the line-of-sight (transverse) density fluctuations and giving rise to scale-dependent galaxy bias. In real space, the contours of the three-dimensional two-point correlation function of LAEs appear to be prominently elongated along the line of sight on large scales, an effect that is opposite to and much stronger than the linear redshift-space distortion effect. The projected two-point correlation function is greatly enhanced in amplitude by a factor of up to a few, compared to the case without the environment dependent selection effect. The new features in LAE clustering can be understood with a simple, physically motivated model, where Lya selection depends on matter density, velocity, and their gradients. We discuss the implications and consequences of the effects on galaxy clustering from Lya selection in interpreting clustering measurements and in constraining cosmology and reionization from LAEs.
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the $p$-$n$ junction depletion regio n result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا