ﻻ يوجد ملخص باللغة العربية
The initial cluster mass function (ICMF) is a fundamental property of star formation in galaxies. To gauge its universality, we measure and compare the ICMFs in irregular and spiral galaxies. Our sample of irregular galaxies is based on 13 nearby galaxies selected from a volume-limited sample from the fifth data release of the Sloan Digital Sky Survey (SDSS). The extinctions, ages, and masses were determined by comparing their ugiz magnitudes to those generated from starburst models. Completeness corrections were performed using Monte Carlo simulations in which artificial clusters were inserted into each galaxy. We analyzed three nearby spiral galaxies with SDSS data in exactly the same way to derive their ICMF based on a similar number of young, massive clusters as the irregular galaxy ICMF. We find that the ICMFs of irregular and spiral galaxies for masses >3x10^4 M_sun are statistically indistinguishable. For clusters more massive than 3x10^4 M_sun, the ICMF of the irregular galaxies is reasonably well fit by a power law dN(M)/dM ~ M^-a_M with a_M = 1.88 +/- 0.09. Similar results were obtained for the ICMF of the spiral galaxy sample but with a_M = 1.75 +/- 0.06. We discuss the implications of our result for theories of star cluster formation: the shape of the ICMF appears to be independent of metallicity and galactic shear rate.
We investigate the Initial Mass Function and mass segregation in super star cluster M82-F with high resolution Keck/NIRSPEC echelle spectroscopy. Cross-correlation with template supergiant spectra provides the velocity dispersion of the cluster, enab
We discuss the possibility that gravitational focusing, is responsible for the power-law mass function of star clusters $N(log M) propto M^{-1}$. This power law can be produced asymptotically when the mass accretion rate of an object depends upon the
We present a new technique to quantify cluster-to-cluster variations in the observed present-day stellar mass functions of a large sample of star clusters. Our method quantifies these differences as a function of both the stellar mass and the total c
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun
Recently de Marchi, Paresce & Pulone (2007) studied a sample of twenty globular clusters and found that all clusters with high concentrations have steep stellar mass-functions while clusters with low concentration have comparatively shallow mass-func