ترغب بنشر مسار تعليمي؟ اضغط هنا

ACS photometry of extended, luminous globular clusters in the outskirts of M31

148   0   0.0 ( 0 )
 نشر من قبل Dougal Mackey
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. D. Mackey




اسأل ChatGPT حول البحث

A new population of extended, luminous globular clusters has recently been discovered in the outskirts of M31. These objects have luminosities typical of classical globular clusters, but much larger half-light radii. We report the first results from deep ACS imaging of four such clusters, one of which is a newly-discovered example lying at a projected distance of ~60 kpc from M31. Our F606W, F814W colour-magnitude diagrams extend ~3 magnitudes below the horizontal branch level, and clearly demonstrate, for the first time, that all four clusters are composed of >10 Gyr old, metal-poor stellar populations. No evidence for multiple populations is observed. From a comparison with Galactic globular cluster fiducials we estimate metallicities in the range -2.2 < [Fe/H] < -1.8. The observed horizontal branch morphologies show a clear second parameter effect between the clusters. Preliminary radial luminosity profiles suggest integrated magnitudes in the range -6.6 < M_V < -7.7, near the median value of the globular cluster luminosity function. Our results confirm that these four objects are bona fide old, metal-poor globular clusters, albeit with combined structures and luminosities unlike those observed for any other globular clusters in the Local Group or beyond.



قيم البحث

اقرأ أيضاً

66 - A.D. Mackey 2006
We report the first results from deep ACS imaging of ten classical globular clusters in the far outer regions (15 < R_p < 100 kpc) of M31. Eight of the clusters, including two of the most remote M31 globular clusters presently known, are described fo r the first time. Our F606W, F814W colour-magnitude diagrams extend ~ 3 magnitudes below the horizontal branch and clearly demonstrate that the majority of these objects are old (> 10 Gyr), metal-poor clusters. Five have [Fe/H] ~ -2.1, while an additional four have -1.9 < [Fe/H] < -1.5. The remaining object is more metal-rich, with [Fe/H] ~ -0.70. Several clusters exhibit the second parameter effect. Using aperture photometry, we estimate integrated luminosities and structural parameters for all clusters. Many, including all four clusters with projected radii greater than 45 kpc, are compact and very luminous, with -8.9 < M_V < -8.3. These four outermost clusters are thus quite unlike their Milky Way counterparts, which are typically diffuse, sub-luminous (-6.0 < M_V < -4.7) and more metal-rich (-1.8 < [Fe/H] < -1.3).
We present ultraviolet photometry for globular clusters (GCs) in M31 from 15 square deg of imaging using the Galaxy Evolution Explorer (GALEX). We detect 200 and 94 GCs with certainty in the near-ultraviolet (NUV; 1750 - 2750 Angstroms) and far-ultra violet (FUV; 1350 - 1750 Angstroms) bandpasses, respectively. Our rate of detection is about 50% in the NUV and 23% in the FUV, to an approximate limiting V magnitude of 19. Out of six clusters with [Fe/H]>-1 seen in the NUV, none is detected in the FUV bandpass. Furthermore, we find no candidate metal-rich clusters with significant FUV flux, because of the contribution of blue horizontal-branch (HB) stars, such as NGC 6388 and NGC 6441, which are metal-rich Galactic GCs with hot HB stars. We show that our GALEX photometry follows the general color trends established in previous UV studies of GCs in M31 and the Galaxy. Comparing our data with Galactic GCs in the UV and with population synthesis models, we suggest that the age range of M31 and Galactic halo GCs are similar.
129 - Sibilla Perina 2009
With the aim of increasing the sample of M31 clusters for which a colour magnitude diagram is available, we searched the HST archive for ACS images containing objects included in the Revised Bologna Catalogue of M31 globular clusters. Sixty-three suc h objects were found. We used the ACS images to confirm or revise their classification and we obtained useful CMDs for 11 old globular clusters and 6 luminous young clusters. We obtained simultaneous estimates of the distance, reddening, and metallicity of old clusters by comparing their observed field-decontaminated CMDs with a grid of template clusters of the Milky Way. We estimated the age of the young clusters by fitting with theoretical isochrones. For the old clusters, we found metallicities in the range -0.4<=[Fe/H]<=-1.9, that generally agree with existing spectroscopic extimates. At least four of them display a clear blue HB, indicating ages >10 Gyr. All six candidate young clusters are found to have ages <1Gyr. With the present work the total number of M31 GCs with reliable optical CMD increases from 35 to 44 for the old clusters, and from 7 to 11 for the young ones. The old clusters show similar characteristics to those of the MW. We discuss the case of the cluster B407, with a metallicity [Fe/H] ~-0.6 and located at a large projected distance from the centre of M31 and from the galaxy major axis. Metal-rich globulars at large galactocentric distances are rare both in M31 and in the MW. B407, in addition, has a velocity in stark contrast with the rotation pattern shared by the bulk of M31 clusters of similar metallicity. This, along with other empirical evidence, supports the hypothesis that the cluster is physically associated with a substructure in the M31 halo that has been interpreted as the relic of a merging event.
We present three new clusters discovered in the halo of M31 which, although having globular-like colours and luminosities,have an unusually large half-light radii, ~30 pc. They lie at projected galactocentric distances of approx. 15 to 35 kpc. These objects begin to fill the gap in parameter space between globular clusters and dwarf spheroidals, and are unlike any clusters found in the Milky Way, or elsewhere to date. Basic photometric and derived King profile fit parameters are given, and we discuss possible origins and their relationships to other populations.
128 - Song Wang 2014
We present 2MASS $JHK_{rm s}$ photometry for 913 star clusters and candidates in the field of M31, which are selected from the latest Revised Bologna Catalog of M31 globular clusters (GCs) and candidates. The photometric measurements in this paper su pplement this catalog, and provide a most comprehensive and homogeneous photometric catalog for M31 GCs in the $JHK_{rm s}$ bandpasses. In general, our photometry is consistent with previous measurements. The globular cluster luminosity function (GCLF) peaks for the confirmed GCs derived by fitting a $t_5$ distribution using maximum likelihood method are: $J_0 = 15.348_{-0.208}^{+0.206}$, $H_0 = 14.703_{-0.180}^{+0.176}$, and ${K_{rm s}}_0 = 14.534_{-0.146}^{+0.142}$, all of which agree well with previous studies. The GCLFs are different between metal-rich (MR) and metal-poor (MP), inner and outer subpopulations, as that MP clusters are fainter than their MR counterparts, and the inner clusters are brighter than the outer ones, which confirm previous results. The NIR colors of the GC candidates are on average redder than those of the confirmed GCs, which lead to an obscure bimodal distribution of the color indices. The relation of $(V-K_{rm s})_0$ and metallicity shows a notable departure from linearity, with a shallower slope towards the redder end. The color-magnitude diagram (CMD) and color-color diagram show that many GC candidates are located out of the evolutionary tracks, suggesting that some of them may be false M31 GC candidates. The CMD also shows that the initial mass function of M31 GCs covers a large range, and the majority of the clusters have initial masses between $10^3$ and $10^6$ $M_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا