ﻻ يوجد ملخص باللغة العربية
Published galaxy power spectra from the 2dFGRS and SDSS are not in good agreement. We revisit this issue by analyzing both the 2dFGRS and SDSS DR5 catalogues using essentially identical technqiues. We confirm that the 2dFGRS exhibits relatively more large scale power than the SDSS, or, equivalently, SDSS has more small scale power. We demonstrate that this difference is due the r-band selected SDSS catalogue being dominated by more strongly clustered red galaxies, due to these galaxies having a stronger scale dependent bias. The power spectra of galaxies of the same rest frame colours from the two surveys match well. It is therefore important to accurately model scale dependent bias to get accurate estimates of cosmological parameters from these power spectra.
We have analysed the distribution of galaxies in groups identified in the largest redshift surveys at the present: the final release of the 2dF Galaxy Redshift Survey and the first release of the Sloan Digital Sky Survey. Our work comprises the study
We present a Fourier analysis of the clustering of galaxies in the combined Main galaxy and Luminous Red Galaxy (LRG) Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) sample. The aim of our analysis is to consider how well we can measure the cosm
We derive constraints on cosmological parameters using the power spectrum of galaxy clustering measured from the final two-degree field galaxy redshift survey (2dFGRS) and a compilation of measurements of the temperature power spectrum and temperatur
We analyse the observed correlation between galaxy environment and H-alpha emission line strength, using volume-limited samples and group catalogues of 24968 galaxies drawn from the 2dF Galaxy Redshift Survey (Mb<-19.5) and the Sloan Digital Sky Surv
We compute the angular power spectrum C_l from 1.5 million galaxies in early SDSS data on large angular scales, l<600. The data set covers about 160 square degrees, with a characteristic depth of order 1 Gpc/h in the faintest (21<r<22) of our four ma