ﻻ يوجد ملخص باللغة العربية
We present optical echelle spectra of four gamma-ray burst (GRB) afterglows (GRB 050730, GRB 050820, GRB 051111, and GRB 060418) discovered during the first 1.5 years of operation of the Swift satellite and localized by either the Swift telescope or follow-up ground-based imaging. We analyze the spectra to derive accurate column density measurements for the transitions arising in the interstellar medium (ISM) of the GRB host galaxies. These measurements can be used to constrain the physical properties of the ISM including the metallicity, dust-to-gas ratio, ionization state, and chemical abundances of the gas. We also present measurements of the strong MgII systems in the GRB afterglow spectra. With the publication of this paper, we provide the first data release of echelle afterglow spectra by the GRAASP collaboration to the general community.
We use a large sample of GRB afterglow and prompt-emission data (adding further GRB afterglow observations in this work) to compare the optical afterglows (or the lack thereof) of Type I GRBs with those of Type II GRBs. In comparison to the afterglow
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in a
We present a systematic temporal and spectral study of all Swift-XRT observations of GRB afterglows discovered between 2005 January and 2007 December. After constructing and fitting all light curves and spectra to power-law models, we classify the co
The Swift XRT has been observing GRB afterglows since December 23, 2004. Three-quarters of these observations begin within 300 s of the burst onset, providing an unprecendented look at the behavior of X-ray emission from GRB afterglows in the first f
We explore galaxy properties in general and properties of host galaxies of gamma-ray bursts (GRBs) in particular, using N-body/Eulerian hydrodynamic simulations and the stellar population synthesis model, Starburst99, to infer observable properties.