ﻻ يوجد ملخص باللغة العربية
We present preliminary results from simulated large sky coverage (~100 square degrees) Sunyaev-Zeldovich effect (SZE) cluster surveys using the cosmological adaptive mesh refinement N-body/hydro code Enzo. We have generated simulated light cones to match the resolution and sensitivity of current and future SZE instruments. These simulations are the most advanced calculations of their kind. The simulated sky surveys allow a direct comparison of large N-body/hydro cosmological simulations to current and pending sky surveys. Our synthetic surveys provide an indispensable guide for observers in the interpretation of large area sky surveys, and will develop the tools necessary to discriminate between models for cluster baryonic physics, and to accurately determine cosmological parameters.
Detection of the Warm-Hot Intergalactic Medium (WHIM) using Sunyaev-Zeldovich effect (SZE) surveys is an intriguing possibility, and one that may allow observers to quantify the amount of missing baryons in the WHIM phase. We estimate the necessary s
With Gaia Data Release 2, the astronomical community is entering a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky-Way-mass galaxies in
In studying temperature fluctuations in the cosmic microwave background Weinberg has noted that some ease of calculation and insight can be achieved by looking at the structure of the perturbed light cone on which the perturbed photons propagate. In
Using self-consistent cosmological simulations of disc galaxy formation, we analyse the 1.4 GHz radio flux from high-redshift progenitors of present-day normal spirals within the context of present-day and planned next-generation observational facili
Theoretical descriptions of observable quantities in cosmological perturbation theory should be independent of coordinate systems. This statement is often referred to as gauge-invariance of observable quantities, and the sanity of their theoretical d