ﻻ يوجد ملخص باللغة العربية
We present the results of a deep-imaging search for wide companions to low-mass stars and brown dwarfs using NSFCam on IRTF. We searched a sample of 132 M7-L8 dwarfs to magnitude limits of $J sim 20.5$ and $K sim 18.5$, corresponding to secondary-primary mass ratios of $sim 0.5$. No companions were found with separations between $2{arcsec}$ to $31{arcsec}$ ($sim$40 AU to $sim$1000 AU). This null result implies a wide companion frequency below 2.3% at the 95% confidence level within the sensitivity limits of the survey. Preliminary modeling efforts indicate that we could have detected 85% of companions more massive than $0.05 M_{odot}$ and 50% above $0.03 M_{odot}$.
We use three field L and T dwarfs which were discovered to be wide companions to known stars by the Two Micron All-Sky Survey (2MASS) to derive a preliminary brown dwarf companion frequency. Observed L and T dwarfs indicate that brown dwarfs are not
We imaged five objects near the star forming clouds of Ophiuchus with the Keck Laser Guide Star AO system. We resolved Allers et al. (2006)s #11 (Oph 16222-2405) and #16 (Oph 16233-2402) into binary systems. The #11 object is resolved into a 243 AU b
We present the analysis of MOA-2007-BLG-197Lb, the first brown dwarf companion to a Sun-like star detected through gravitational microlensing. The event was alerted and followed-up photometrically by a network of telescopes from the PLANET, MOA, and
Since the beginning of precise Doppler surveys, which have had stunning success in detecting extrasolar planetary companions, one surprising enigma has emerged: the relative paucity of spectroscopic binaries where the secondary mass lies in between t
Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ~5 AU in the mass range of ~10 - 80 M$_{text{Jup}}$. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. N