ﻻ يوجد ملخص باللغة العربية
We present Spitzer observations of the blue compact dwarf galaxy (BCD) Haro 3, with an oxygen abundance of 12+log(O/H)=8.32. These data are part of a larger study of star formation and dust in low-metallicity environments.The IRS spectrum of Haro 3 shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with high equivalent widths. Gaseous nebular fine-structure lines are also seen. Despite the absence of optical high-excitation lines, a faint high-ionization [O IV] line at 25.89 micron indicates the presence of radiation as hard as 54.9 eV. A CLOUDY model suggests that the MIR lines originate in two regions: a low-extinction optically-emitting region, and an optically invisible one with much higher extinction. The morphology of Haro 3 changes with wavelength. IRAC 4.5 micron traces extended stellar photospheric emission from the body of the galaxy and hot dust continuum coming mainly from star-forming regions; 8 micron probes extended PAH emission coming mainly from the general ISM; MIPS 24 and 70 micron images map compact small-grain warm dust emission associated with active star formation, and 160 micron reflects cooler extended dust associated with older stellar populations. We have derived the optical-to-radio spectral energy distribution (SED) of the brightest star-forming region A in Haro 3. The best-fit DUSTY model of the SED gives a total luminosity of 2.8e9 Lsun and a mass of 2.8e6 Msun for the ionizing clusters. We infer an extinction A(V)<3, intermediate between the optical A(V)~0.5 and the radio A(V)~8, consistent with the picture that longer wavelength observations probe more deeply into star-forming regions.
(abridged) We present new Spitzer, UKIRT and MMT observations of the blue compact dwarf galaxy (BCD) Mrk 996, with an oxygen abundance of 12+log(O/H)=8.0. This galaxy has the peculiarity of possessing an extraordinarily dense nuclear star-forming reg
We present a simplified chemical and thermal model designed to allow computationally efficient study of the thermal evolution of metal-poor gas within large numerical simulations. Our main simplification is the neglect of the molecular chemistry of t
Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. T
Many early-type galaxies are detected at 24 to 160 micron but the emission is usually dominated by an AGN or heating from the evolved stellar population. Here we present MIPS observations of a sample of elliptical and lenticular galaxies which are ri
(Abridged) Far ultraviolet to far infrared images of the nearby galaxy NGC5194, from Spitzer, GALEX, Hubble Space Telescope and ground--based data, are used to investigate local and global star formation, and the impact of dust extinction in HII-emit