ﻻ يوجد ملخص باللغة العربية
We investigate polarization of high-energy emissions from the Crab pulsar in the frame work of the outer gap accelerator, following previous works of Cheng and coworkers. The recent version of the outer gap, which extends from inside the null charge surface to the light cylinder, is used for examining the synchrotron radiations from the secondary and the tertiary pairs, which are produced outside the gap. We calculate the light curve, the spectrum and the polarization characteristics, simultaneously, by taking into account gyration motion of the particles. The polarization position angle curve and the polarization degree are calculated to compare with the Crab optical data. We demonstrate that the radiations from inside the null charge surface make outer-wing and off-pulse emissions in the light curve, and the tertiary pairs contribute to bridge emissions. The emissions from the secondary pairs explain the main features of the observed light curve and spectrum. On the other hand, both emissions from inside the null charge surface and from the tertiary pairs are required to explain the optical polarization behavior of the Crab pulsar. The energy dependence of the polarization features is expected by the present model. For the Crab pulsar, the polarization position angle curve indicates that the viewing angle of the observer measured from the rotational axis is greater than $90^{circ}$.
We investigate polarization of high-energy emissions from the Crab pulsar in the frame work of the outer gap accelerator. The recent version of the outer gap, which extends from inside the null charge surface to the light cylinder, is used for examin
We present a modified outer gap model to study the phase-resolved spectra of the Crab pulsar. A theoretical double peak profile of the light curve containing the whole phase is shown to be consistent with the observed light curve of the Crab pulsar b
POLAR is a dedicated Gamma-Ray Burst polarimeter making use of Compton-scattering which took data from the second Chinese spacelab, the Tiangong-2 from September 2016 to April 2017. It has a wide Field of View of $sim6$ steradians and an effective ar
Using the Westerbork Synthesis Radio Telescope (WSRT), we obtained high-time-resolution measurements of the full (linear and circular) polarization of the Crab pulsar. Taken at a resolution of 1/8192 of the 34-ms pulse period (i.e., $4.1~mu{rm s}$),
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises wit