ﻻ يوجد ملخص باللغة العربية
The far-ultraviolet spectrum of the DAO White Dwarf LS V+4621, the exciting star of the possible planetary nebula Sh 2-216,is strongly contaminated by absorption features from the interstellar medium (ISM). For an ongoing spectral analysis, we aim to extract the pure photospheric spectrum in order to identify and model metal lines of species which are not detectable in the near-ultraviolet wavelength range. We have modeled the interstellar absorption precisely and considered it for the simulation of the FUSE (Far Ultraviolet Spectroscopic Explorer) observation. A state-of-the-art NLTE model-atmosphere spectrum which includes 16 elements is combined with the ISM absorption and then compared with the FUSE spectrum.
The DAO-type white dwarf LS V+4621 is the hydrogen-rich central star of the possible planetary nebula Sh 2-216. We have taken high-resolution, high-S/N ultraviolet spectra with STIS aboard the HST and FUSE in order to constrain its photospheric param
LS V +4621 is the DAO-type central star of the planetary nebula Sh 2-216. We perform a comprehensive spectral analysis of high-resolution, high-S/N ultraviolet observations obtained with FUSE and STIS aboard the HST as well as the optical spectrum of
We discuss the interstellar absorption lines found in FUSE spectra of the Wolf-Rayet binary Sk 108, located in the northeastern part of the main ``bar of the Small Magellanic Cloud. The spectra cover the wavelength range 988-1187 Angstroms, at a reso
We outline the results from a FUSE Team program designed to characterize OVI absorption in the disk of the Milky Way. We find that OVI absorption occurs throughout most of the Galactic plane, at least out to several kpc from the Sun, and that it is d
Spectral analyses of hot, compact stars with NLTE (non-local thermodynamical equilibrium) model-atmosphere techniques allow the precise determination of photospheric parameters. The derived photospheric metal abundances are crucial constraints for st