ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Studies of Dark Energy with LSST

62   0   0.0 ( 0 )
 نشر من قبل J. Anthony Tyson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Anthony Tyson




اسأل ChatGPT حول البحث

Starting around 2013, data from the Large Synoptic Survey Telescope (LSST) will be analyzed for a wide range of phenomena. By separately tracing the development of mass structure and rate of expansion of the universe, these data will address the physics of dark matter and dark energy, the possible existence of modified gravity on large scales, large extra dimensions, the neutrino mass, and possible self interaction of dark matter particles.



قيم البحث

اقرأ أيضاً

The Large Synoptic Survey Telescope (LSST) will explore the entire southern sky over 10 years starting in 2022 with unprecedented depth and time sampling in six filters, $ugrizy$. Artificial power on the scale of the 3.5 deg LSST field-of-view will c ontaminate measurements of baryonic acoustic oscillations (BAO), which fall at the same angular scale at redshift $z sim 1$. Using the HEALPix framework, we demonstrate the impact of an un-dithered survey, in which $17%$ of each LSST field-of-view is overlapped by neighboring observations, generating a honeycomb pattern of strongly varying survey depth and significant artificial power on BAO angular scales. We find that adopting large dithers (i.e., telescope pointing offsets) of amplitude close to the LSST field-of-view radius reduces artificial structure in the galaxy distribution by a factor of $sim$10. We propose an observing strategy utilizing large dithers within the main survey and minimal dithers for the LSST Deep Drilling Fields. We show that applying various magnitude cutoffs can further increase survey uniformity. We find that a magnitude cut of $r < 27.3$ removes significant spurious power from the angular power spectrum with a minimal reduction in the total number of observed galaxies over the ten-year LSST run. We also determine the effectiveness of the observing strategy for Type Ia SNe and predict that the main survey will contribute $sim$100,000 Type Ia SNe. We propose a concentrated survey where LSST observes one-third of its main survey area each year, increasing the number of main survey Type Ia SNe by a factor of $sim$1.5, while still enabling the successful pursuit of other science drivers.
65 - J. A. Tyson 2002
The number of mass clusters and their distribution in redshift are very sensitive to the density of matter Omega_m and the equation of state of dark energy w. Using weak lens gravitational tomography one can detect clusters of dark matter, weigh them , image their projected mass distribution, and determine their 3-D location. The degeneracy curve in the Omega_m - w plane is nearly orthogonal to that from CMB or SN measurements. Thus, a combination of CMB data with weak lens tomography of clusters can yield precision measurements of Omega_m and w, independently of the SN observations. The Large Synoptic Survey Telescope (LSST) will repeatedly survey 30,000 square degrees of the sky in multiple wavelengths. LSST will create a 3-D tomographic assay of mass overdensities back to half the age of the universe by measuring the shear and color-redshift of billions of high redshift galaxies. By simultaneously measuring several functions of cosmic shear and mass cluster abundance, LSST will provide a number of independent constraints on the dark energy density and the equation of state.
We present a satellite mission concept to measure the dark energy equation of state parameter w with percent-level precision. The Very Ambitious Dark Energy Research satellite (VADER) is a multi-wavelength survey mission joining X-ray, optical, and I R instruments for a simultaneous spectral coverage from 4microns (0.3eV) to 10keV over a field of view (FoV) of 1 square degree. VADER combines several clean methods for dark energy studies, the baryonic acoustic oscillations in the galaxy and galaxy cluster power spectrum and weak lensing, for a joint analysis over an unrivalled survey volume. The payload consists of two XMM-like X-ray telescopes with an effective area of 2,800cm^2 at 1.5keV and state-of-the-art wide field DEPFET pixel detectors (0.1-10keV) in a curved focal plane configuration to extend the FoV. The X-ray telescopes are complemented by a 1.5m optical/IR telescope with 8 instruments for simultaneous coverage of the same FoV from 0.3 to 4 microns. The 8 dichroic-separated bands (u,g,r,z,J,H,K,L) provide accurate photometric galaxy redshifts, whereas the diffraction-limited resolution of the central z-band allows precise shape measurements for cosmic shear analysis. The 5 year VADER survey will cover a contiguous sky area of 3,500 square degrees to a depth of z~2 and will yield accurate photometric redshifts and multi-wavelength object parameters for about 175,000 galaxy clusters, one billion galaxies, and 5 million AGN. VADER will not only provide unprecedented constraints on the nature of dark energy, but will additionally extend and trigger a multitude of cosmic evolution studies to very large (>10 Gyrs) look-back times.
This paper introduces cosmoDC2, a large synthetic galaxy catalog designed to support precision dark energy science with the Large Synoptic Survey Telescope (LSST). CosmoDC2 is the starting point for the second data challenge (DC2) carried out by the LSST Dark Energy Science Collaboration (LSST DESC). The catalog is based on a trillion-particle, 4.225 Gpc^3 box cosmological N-body simulation, the `Outer Rim run. It covers 440 deg^2 of sky area to a redshift of z=3 and is complete to a magnitude depth of 28 in the r-band. Each galaxy is characterized by a multitude of properties including stellar mass, morphology, spectral energy distributions, broadband filter magnitudes, host halo information and weak lensing shear. The size and complexity of cosmoDC2 requires an efficient catalog generation methodology; our approach is based on a new hybrid technique that combines data-driven empirical approaches with semi-analytic galaxy modeling. A wide range of observation-based validation tests has been implemented to ensure that cosmoDC2 enables the science goals of the planned LSST DESC DC2 analyses. This paper also represents the official release of the cosmoDC2 data set, including an efficient reader that facilitates interaction with the data.
The Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC) will use five cosmological probes: galaxy clusters, large scale structure, supernovae, strong lensing, and weak lensing. This Science Requirements Document (SRD) quan tifies the expected dark energy constraining power of these probes individually and together, with conservative assumptions about analysis methodology and follow-up observational resources based on our current understanding and the expected evolution within the field in the coming years. We then define requirements on analysis pipelines that will enable us to achieve our goal of carrying out a dark energy analysis consistent with the Dark Energy Task Force definition of a Stage IV dark energy experiment. This is achieved through a forecasting process that incorporates the flowdown to detailed requirements on multiple sources of systematic uncertainty. Futur
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا