ﻻ يوجد ملخص باللغة العربية
Starting around 2013, data from the Large Synoptic Survey Telescope (LSST) will be analyzed for a wide range of phenomena. By separately tracing the development of mass structure and rate of expansion of the universe, these data will address the physics of dark matter and dark energy, the possible existence of modified gravity on large scales, large extra dimensions, the neutrino mass, and possible self interaction of dark matter particles.
The Large Synoptic Survey Telescope (LSST) will explore the entire southern sky over 10 years starting in 2022 with unprecedented depth and time sampling in six filters, $ugrizy$. Artificial power on the scale of the 3.5 deg LSST field-of-view will c
The number of mass clusters and their distribution in redshift are very sensitive to the density of matter Omega_m and the equation of state of dark energy w. Using weak lens gravitational tomography one can detect clusters of dark matter, weigh them
We present a satellite mission concept to measure the dark energy equation of state parameter w with percent-level precision. The Very Ambitious Dark Energy Research satellite (VADER) is a multi-wavelength survey mission joining X-ray, optical, and I
This paper introduces cosmoDC2, a large synthetic galaxy catalog designed to support precision dark energy science with the Large Synoptic Survey Telescope (LSST). CosmoDC2 is the starting point for the second data challenge (DC2) carried out by the
The Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC) will use five cosmological probes: galaxy clusters, large scale structure, supernovae, strong lensing, and weak lensing. This Science Requirements Document (SRD) quan