ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing X-ray Measurements of Galaxy Clusters with Cosmological Simulations

55   0   0.0 ( 0 )
 نشر من قبل Daisuke Nagai
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daisuke Nagai




اسأل ChatGPT حول البحث

X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the intracluster medium (ICM) physics are understood and controlled. In this paper, we present mock Chandra analyses of cosmological cluster simulations and assess X-ray measurements of galaxy cluster properties using a model and procedure essentially identical to that used in real data analysis. We show that reconstruction of three-dimensional ICM density and temperature profiles is excellent for relaxed clusters, but still reasonably accurate for unrelaxed systems. The total ICM mass is measured quite accurately (<6%) in all clusters, while the hydrostatic estimate of the gravitationally bound mass is biased low by about 5%-20% through the virial region, primarily due to additional pressure support provided by subsonic bulk motions in the ICM, ubiquitous in our simulations even in relaxed systems. Gas fraction determinations are therefore biased high; the bias increases toward cluster outskirts and depends sensitively on its dynamical state, but we do not observe significant trends of the bias with cluster mass or redshift. We also find that different average ICM temperatures, such as the X-ray spectroscopic Tspec and gas-mass-weighted Tmg, are related to each other by a constant factor with a relatively small object-to-object scatter and no systematic trend with mass, redshift or the dynamical state of clusters. We briefly discuss direct applications of our results for different cluster-based cosmological tests.



قيم البحث

اقرأ أيضاً

X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the intracluster medium (ICM) physics are understood and controlled. In this paper, we study the effects of galax y formation on the properties of the ICM and X-ray observable-mass relations using high-resolution self-consistent cosmological simulations of galaxy clusters and comparing their results with recent Chandra X-ray observations. We show that despite complexities of their formation and uncertainties in their modeling, clusters of galaxies both in observations and numerical simulations are remarkably regular outside of their cores, which holds great promise for their use as cosmological probes.
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil e we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes an overestimate of the star formation and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations ar e performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} > 10^{14} M_{odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at $z sim 2$. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at $z=2$ are 10 per cent lower with respect to $z=0$ due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range $z=0-1$, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and $Y_X$ is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.
117 - John A. ZuHone 2019
We test the predictions of Emergent Gravity using matter densities of relaxed, massive clusters of galaxies using observations from optical and X-ray wavebands. We improve upon previous work in this area by including the baryon mass contribution of t he brightest cluster galaxy in each system, in addition to total mass profiles from gravitational lensing and mass profiles of the X-ray emitting gas from Chandra. We use this data in the context of Emergent Gravity to predict the apparent dark matter distribution from the observed baryon distribution, and vice-versa. We find that although the inclusion of the brightest cluster galaxy in the analysis improves the agreement with observations in the inner regions of the clusters ($r lesssim 10-30$ kpc), at larger radii ($r sim 100-200$ kpc) the Emergent Gravity predictions for mass profiles and baryon mass fractions are discrepant with observations by a factor of up to $sim2-6$, though the agreement improves at radii near $r_{500}$. At least in its current form, Emergent Gravity does not appear to reproduce the observed characteristics of relaxed galaxy clusters as well as cold dark matter models.
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich cluster s, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations agrees well in trend and evolution with the observational results obtained from two data samples characterised by a wide range of masses and a large redshift coverage. We find that the iron abundance in the cluster core ($r<0.1R_{500}$) does not correlate with the temperature nor presents a significant evolution. The scale invariance is confirmed when the metallicity is related directly to the total mass. The slope of the best-fitting relations is shallow ($betasim-0.1$) in the innermost regions ($r<0.5R_{500}$) and consistent with zero outside. We investigate the impact of the AGN feedback and find that it plays a key role in producing a constant value of the outskirts metallicity from groups to clusters. This finding additionally supports the picture of early enrichment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا