ترغب بنشر مسار تعليمي؟ اضغط هنا

An Apparent Hard X-ray Decline of CH Cygni

63   0   0.0 ( 0 )
 نشر من قبل Koji Mukai
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Koji Mukai




اسأل ChatGPT حول البحث

CH Cygni is a symbiotic star consisting of an M giant and an accreting white dwarf, which is known to be a highly variable X-ray source with a complex, two-component, spectra. Here we report on two Suzaku observations of CH Cyg, taken in 2006 January and May, during which the system was seen to be in a soft X-ray bright, hard X-ray faint state. Based on the extraordinary strength of the 6.4 keV fluorescent Fe K-alpha line, we show that the hard X-rays observed with Suzaku are dominated by scattering.



قيم البحث

اقرأ أيضاً

Spatially resolved images of the galactic supernova remnant G78.2+2.1 (gamma-Cygni) in hard X-ray energy bands from 25 keV to 120 keV are obtained with the IBIS-ISGRI imager aboard the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The ima ges are dominated by localized clumps of about ten arcmin in size. The flux of the most prominent North-Western (NW) clump is (1.7 +/- 0.4) 10^{-11} erg/cm^2/s in the 25-40 keV band. The observed X-ray fluxes are in agreement with extrapolations of soft X-ray imaging observations of gamma-Cygni by ASCA GIS and spatially unresolved RXTE PCA data. The positions of the hard X-ray clumps correlate with bright patches of optical line emission, possibly indicating the presence of radiative shock waves in a shocked cloud. The observed spatial structure and spectra are consistent with model predictions of hard X-ray emission from nonthermal electrons accelerated by a radiative shock in a supernova interacting with an interstellar cloud, but the powerful stellar wind of the O9V star HD 193322 is a plausible candidate for the NW source as well.
112 - Fabio Muleri 2006
Development of multi-layer optics makes feasible the use of X-ray telescope at energy up to 60-80 keV: in this paper we discuss the extension of photoelectric polarimeter based on Micro Pattern Gas Chamber to high energy X-rays. We calculated the sen sitivity with Neon and Argon based mixtures at high pressure with thick absorption gap: placing the MPGC at focus of a next generation multi-layer optics, galatic and extragalactic X-ray polarimetry can be done up till 30 keV.
HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, d erived from long-slit echelle spectra, is of 130 km/s. In spite of its complex appearence, the velocity data show that the basic morphology of the inner regions of the optical nebula is that of a bipolar (or conical) outflow extending nearly along the plane of the sky out to some 2000 A.U. from the centre. Even if the extension of this bipolar outflow and its position angle are consistent with those of the radio jet produced in 1984 (extrapolated to the time of our optical imagery), no obvious counterpart is visible of the original, dense radio bullets ejected by the system. We speculate that the optical bipolar outflow might be the remannt of the interaction of the bullets with a relatively dense circumstellar medium.
207 - Lisa M. Winter 2007
The SWIFT gamma ray observatorys Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195 keV). In this paper, we present for the first time {it XMM-Newton} X-ray spectra for 22 B AT AGNs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n$_H < 3 times 10^{25}$ cm$^{-2}$), local ($<z> = 0.03$), AGN sample. We find 9/22 low absorption (n$_H < 10^{23}$ cm$^{-2}$), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of citet{rey97} and citet{geo98}, who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (14/22) have more complex spectra, well-fit by an absorbed power law at $E > 2.0$ keV. Five of the complex sources are classified as Compton-thick candidates. Further, we find four more sources with properties consistent with the hidden/buried AGN reported by Ueda {it et al.} (2007). Finally, we include a comparison of the {it XMM-Newton} EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.
XMM-Newton observations of 10 ULIRGs are reported. The aim is to investigate in hard X-rays a complete ULIRG sample selected from the bright IRAS 60$mu$m catalogue. All sources are detected in X-rays, 5 of which for the first time. These observations confirm that ULIRGs are intrinsically faint X-rays sources, their observed X-ray luminosities being typically L(2-10 keV)<1E42-43 erg/s, whereas their bolometric luminosities are L>1E45 erg/s. In all sources we find evidence for thermal emission from hot plasma with kT~0.7keV, dominating the X-ray spectra below 1keV, and likely associated with a nuclear or circumnuclear starburst. This thermal emission appears uncorrelated with the FIR luminosity, suggesting that,in addition to the ongoing rate of star formation, other parameters may also affect it. The soft X-ray emission appears to be extended on a scale of ~30kpc for Mkn231 and IRAS19254-7245, possible evidence of galactic superwinds. In these 2 sources, in IRAS20551-4250 and IRAS23128-5919 we find evidence for the presence of hidden AGNs, while a minor AGN contribution may be suspected also in IRAS20100-4156. In particular, we have detected a strong Fe line at 6.4keV in the spectrum of IRAS19254-7245 and a weaker one in Mkn231, suggestive of deeply buried AGNs. For the other sources, the X-ray luminosities and spectral shapes are consistent with hot thermal plasma and X-ray binary emissions of mainly starburst origin. We find that the 2-10keV luminosities in these sources, most likely due to high-mass X-ray binaries, are correlated with L_FIR: both luminosities are good indicators of the current global SFR in the galaxy. The composite nature of ULIRGs is then confirmed, with hints for a predominance of the starburst over the AGN phenomenon in these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا