ترغب بنشر مسار تعليمي؟ اضغط هنا

The cosmic star formation rate evolution from z=5 to z=0 from the VIMOS VLT Deep Survey

116   0   0.0 ( 0 )
 نشر من قبل Laurence Tresse
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the evolution of the comoving SFR density in the redshift range 0 < z < 5 using the first epoch data release of the VVDS, that is 11564 spectra selected at I_AB=24 over 2200 arcmin^2 in two fields of view, the VVDS-0226-04 and the VVDS-CDFS-0332-27, and the cosmological parameters (Omega_M, Omega_L, h)=(0.3, 0.7, 0.7). We study the multi-wavelength non dust-corrected luminosity densities at 0 < z < 2 from the rest-frame FUV to the optical passbands, and the rest-frame 1500A luminosity functions and densities at 2.7 < z < 5. They evolve from z=1.2 to 0.05 according to (1+z)^{x} with x = 2.05, 1.94, 1.92, 1.14, 0.73, 0.42, 0.30 in the FUV-1500, NUV-2800, U-3600, B-4400, V-5500, R-6500, and I-7900 passbands, respectively. From z = 1.2 to 0.2 the B-band density for the irregular-like galaxies decreases markedly by a factor 3.5 while it increases by a factor 1.7 for the elliptical-like galaxies. We identify several SFR periods; from z = 5 to 3.4 the FUV-band density increases by at most 0.5dex, from z=3.4 to 1.2 it decreases by 0.08dex, from z=1.2 to 0.05 it declines steadily by 0.6dex. For the most luminous M_AB(1500) < -21 galaxies the FUV-band density drops by 2dex from z = 3.9 to 1.2, and for the intermediate -21 < M_AB(1500) < -20 galaxies it drops by 2dex from z = 0.2 to 0. Comparing with dust corrected surveys, at 0.4 < z < 2 the FUV seems obscured by a constant factor of ~1.8-2 mag, while at z < 0.5 it seems progressively less obscured by up to ~0.9-1 mag when the dust-deficient early-type population is increasingly dominating the B-band density. The VVDS results agree with a downsizing picture where the most luminous sources cease to efficiently produce new stars 12 Gyrs ago (at z~4), while intermediate luminosity sources keep producing stars until 2.5 Gyrs ago (at z~0.2).(abridged)



قيم البحث

اقرأ أيضاً

153 - O. Le Fevre , L. Guzzo , B. Meneux 2004
This paper presents the evolution of the clustering of the main population of galaxies from z=2.1 to z=0.2, from the first epoch VIMOS VLT Deep Survey (VVDS), a magnitude limited sample with 17.5<=I_{AB}<=24. We have computed the correlation function s xi(r_p,pi) and w_p(r_p), and the correlation length r_0(z), for the VVDS-02h and VVDS-CDFS fields, for a total of 7155 galaxies in a 0.61deg^2 area. We find that the correlation length in this sample stays roughly constant from z=0.5 to z=1.1, with r_0(z)=2.5-2.8 h^{-1} Mpc (comoving), for galaxies comparable in luminosity to the local 2dFGRS and SDSS samples, indicating that the amplitude of the correlation function was ~2.5x lower at z~1 than observed locally. The correlation length in our lowest redshift bin z=[0.2,0.5] is r_0=2.4 h^{-1} Mpc, lower than for any other population at the same redshift, indicating the low clustering of very low luminosity galaxies, 1.5 magnitudes fainter than in the 2dFGRS or SDSS. The correlation length is increasing to r_0~3.0 h^{-1} Mpc at higher redshifts z=[1.3,2.1], as we are observing increasingly brighter galaxies, comparable to galaxies with MB_AB=-20.5 locally. We compare our measurement to the DEEP2 measurements in the range z=[0.7,1.35] citep{coil} on the population selected applying the same magnitude and color selection criteria as in their survey, and find comparable results. The slowly varying clustering of VVDS galaxies as redshift increases is markedly different from the predicted evolution of the clustering of dark matter, indicating that bright galaxies are already tracing the large scale structures emerging from the dark matter distribution 9-10 billion years ago, a supporting evidence for a strong evolution of the galaxy vs. dark matter bias.
From the VIMOS VLT Deep Survey we use a sample of 6447 galaxies with I_{AB} < 24 to identify 251 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. We find that at z ~ 0. 9, 10.9 +/- 3.2 % of galaxies with M_B(z) < -18-Qz are in pairs with separations dr < 20 kpc/h, dv < 500 km/s, and with dM_B < 1.5, significantly larger than 3.76 +/- 1.71 % at z ~ 0.5; we find that the pair fraction evolves as (1+z)^m with m = 2.49 +/- 0.56. For brighter galaxies with M_B(z=0) < -18.77, the pair fraction is higher and its evolution with redshift is somewhat flatter with m=1.88 pm 0.40, a property also observed for galaxies with increasing stellar masses. Early type, dry mergers, pairs increase their relative fraction from 3 % at z ~ 0.9 to 12 % at z ~ 0.5. We find that the merger rate evolves as N_{mg}=(9.05 +/- 3.76) * 10^{-4}) * (1+z)^{2.43 +/- 0.76}. We find that the merger rate of galaxies with M_B(z) < -18-Qz has significantly evolved since z ~ 1. The merger rate is increasing more rapidly with redshift for galaxies with decreasing luminosities, indicating that the flat evolution found for bright samples is not universal. The merger rate is also strongly dependent on the spectral type of galaxies involved, late type mergers being more frequent in the past, while early type mergers are more frequent today, contributing to the rise in the local density of early type galaxies. About 20 % of the stellar mass in present day galaxies with log(M/M_{sun}) > 9.5 has been accreted through major merging events since z ~ 1, indicating that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe.
Utilizing spectroscopic observations taken for the VIMOS Ultra-Deep Survey (VUDS), new observations from Keck/DEIMOS, and publicly available observations of large samples of star-forming galaxies, we report here on the relationship between the star f ormation rate (SFR) and the local environment ($delta_{gal}$) of galaxies in the early universe ($2<z<5$). Unlike what is observed at lower redshifts ($z<2$), we observe a definite, nearly monotonic increase in the average SFR with increasing galaxy overdensity over more than an order of magnitude in $delta_{gal}$. The robustness of this trend is quantified by accounting for both uncertainties in our measurements and galaxy populations that are either underrepresented or not present in our sample finding that the trend remains significant under all circumstances. This trend appears to be primarily driven by the fractional increase of galaxies in high density environments that are more massive in their stellar content and are forming stars at a higher rate than their less massive counterparts. We find that, even after stellar mass effects are accounted for, there remains a weak but significant SFR-$delta_{gal}$ trend in our sample implying that additional environmentally-related processes are helping to drive this trend. We also find clear evidence that the average SFR of galaxies in the densest environments increases with increasing redshift. These results lend themselves to a picture in which massive gas-rich galaxies coalesce into proto-cluster environments at $zsim3$, interact with other galaxies or with a forming large-scale medium, subsequently using or losing most of their gas in the process, and begin to seed the nascent red sequence that is present in clusters at slightly lower redshifts.
We use 3035 Herschel-SPIRE 500$mu$m sources from 20.3 sq deg of sky in the HerMES Lockman, ES1 and XMM-LSS areas to estimate the star-formation rate density at z = 1-6. 500 mu sources are associated first with 350 and 250 mu sources, and then with Sp itzer 24 mu sources from the SWIRE photometric redshift catalogue. The infrared and submillimetre data are fitted with a set of radiative-transfer templates corresponding to cirrus (quiescent) and starburst galaxies. Lensing candidates are removed via a set of colour-colour and colour-redshift constraints. Star-formation rates are found to extend from < 1 to 20,000 Mo/yr. Such high values were also seen in the all-sky IRAS Faint Source Survey. Star-formation rate functions are derived in a series of redshift bins from 0-6, combined with earlier far-infrared estimates, where available, and fitted with a Saunders et al (1990) functional form. The star-formation-rate density as a function of redshift is derived and compared with other estimates. There is reasonable agreement with both infrared and ultraviolet estimates for z < 3, but we find higher star-formation-rate densities than ultraviolet estimates at z = 3-6. Given the considerable uncertainties in the submillimetre estimates, we can not rule out the possibility that the ultraviolet estimates are correct. But the possibility that the ultraviolet estimates have seriously underestimated the contribution of dust-shrouded star-formation can also not be excluded.
Aims. The aim of this work is to study the contribution of the Ly-a emitters (LAE) to the star formation rate density (SFRD) of the Universe in the interval 2<z<6.6. Methods. We assembled a sample of 217 LAE from the Vimos-VLT Deep Survey (VVDS) wi th secure spectroscopic redshifts in the redshift range 2 < z < 6.62 and fluxes down to F=1.5x10^18 erg/s/cm^2. 133 LAE are serendipitous identifications in the 22 arcmin^2 total slit area surveyed with the VVDS-Deep and the 3.3 arcmin^2 from the VVDS Ultra-Deep survey, and 84 are targeted identifications in the 0.62 deg^2 surveyed with the VVDS-DEEP and 0.16 deg^2 from the Ultra-Deep survey. Among the serendipitous targets we estimate that 90% of the emission lines are most probably Ly-a, while the remaining 10% could be either [OII]3727 or Ly-a. We computed the LF and derived the SFRD from LAE at these redshifts. Results. The VVDS-LAE sample reaches faint line fluxes F(Lya) = 1.5x1^18 erg/s/cm^2 (corresponding to L(Lya)=10^41 erg/s at z~3) enabling the faint end slope of the luminosity function to be constrained to a=-1.6+-0.12 at redshift z~2.5 and to a=-1.78+0.1-0.12 at z=4, placing on firm statistical grounds trends found in previous LAE studies, and indicating that sub-L* LAE contribute significantly to the SFRD. The projected number density and volume density of faint LAE in 2<z<6.6 with F>1.5x10^18 erg/s/cm^2 are 33 galaxies/arcmin^2 and 4x10^-2 Mpc^-3, respectively. We find that the the observed luminosity function of LAE does not evolve from z=2 to z=6. This implies that, after correction for the redshift-dependent IGM absorption, the intrinsic LF must have evolved significantly over 3 Gyr. The SFRD from LAE contributes to about 20% of the SFRD at z =2-3, while the LAE appear to be the dominant source of star formation producing ionizing photons in the early universe z>5-6, becoming equivalent to that of Lyman Break galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا