ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Halos as Bose-Einstein Condensates

62   0   0.0 ( 0 )
 نشر من قبل Burkhard Fuchs
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic dark matter is modelled by a scalar field in order to effectively modify Keplers law without changing standard Newtonian gravity. In particular, a solvable toy model with a self-interaction U(Phi) borrowed from non-topological solitons produces already qualitatively correct rotation curves and scaling relations. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation. Thereby, we can also probe the weak gravitational lensing of our soliton type halo. For cold scalar fields, it corresponds to a gravitationally confined Boson-Einstein condensate, but of galactic dimensions.



قيم البحث

اقرأ أيضاً

The large dark cores of common dwarf galaxies are unexplained by the standard heavy particle interpretation of dark matter. This puzzle is exacerbated by the discovery of a very large but barely visible, dark matter dominated galaxy Antlia II orbit ing the Milky Way, uncovered by tracking star motions with the {t Gaia} satellite. Although Antlia II has a low mass, its visible radius is more than double any known dwarf galaxy, with an unprecedentedly low density core. We show that Antlia II favors dark matter as a Bose-Einstein condensate, for which the ground state is a stable soliton with a core radius given by the de Broglie wavelength. The lower the galaxy mass, the larger the de Broglie wavelength, so the least massive galaxies should have the widest soliton cores of lowest density. An ultra-light boson of $m_psi sim 1.1 times10^{-22}$ eV, accounts well for the large size and slowly moving stars within Antlia II, and agrees with boson mass estimates derived from the denser cores of more massive dwarf galaxies. For this very light boson, Antlia II is close to the lower limiting Jeans scale for galaxy formation permitted by the Uncertainty Principle, so other examples are expected but none significantly larger in size. This simple explanation for the puzzling dark cores of dwarf galaxies implies dark matter as an ultra-light boson, such as an axion generic in String Theory.
216 - Th. Busch , J.R. Anglin 2000
We investigate dark-bright vector solitary wave solutions to the coupled non-linear Schrodinger equations which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are well known in non-linear fiber optics, we show that spatial inhomogeneity strongly affects their motion, stability, and interaction, and that current technology suffices for their creation and control in ultracold trapped gases. The effects of controllably different interparticle scattering lengths, and stability against three-dimensional deformations, are also examined.
Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations, i.e. the relat ive phase of the split condensate is reproducible despite axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the presence of some asymmetries in the two wells of the interferometer.
301 - D. Yan , J.J. Chang , C. Hamner 2011
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween two-dark-bright solitons in a homogeneous condensate and, then, extend ou r considerations to the presence of the trap. An effective equation of motion is derived for the dark-bright soliton center and the existence and stability of stationary two-dark-bright soliton states is illustrated (with the bright components being either in- or out-of-phase). The equation of motion provides the characteristic oscillation frequencies of the solitons, in good agreement with the eigenfrequencies of the anomalous modes of the system.
In this work we present a systematic study of the three-dimensional extension of the ring dark soliton examining its existence, stability, and dynamics in isotropic harmonically trapped Bose-Einstein condensates. Detuning the chemical potential from the linear limit, the ring dark soliton becomes unstable immediately, but can be fully stabilized by an external cylindrical potential. The ring has a large number of unstable modes which are analyzed through spectral stability analysis. Furthermore, a few typical destabilization dynamical scenarios are revealed with a number of interesting vortical structures emerging such as the two or four coaxial parallel vortex rings. In the process of considering the stability of the structure, we also develop a modified version of the degenerate perturbation theory method for characterizing the spectra of the coherent structure. This semi-analytical method can be reliably applied to any soliton with a linear limit to explore its spectral properties near this limit. The good agreement of the resulting spectrum is illustrated via a comparison with the full numerical Bogolyubov-de Gennes spectrum. The application of the method to the two-component ring dark-bright soliton is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا