ﻻ يوجد ملخص باللغة العربية
Galactic dark matter is modelled by a scalar field in order to effectively modify Keplers law without changing standard Newtonian gravity. In particular, a solvable toy model with a self-interaction U(Phi) borrowed from non-topological solitons produces already qualitatively correct rotation curves and scaling relations. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation. Thereby, we can also probe the weak gravitational lensing of our soliton type halo. For cold scalar fields, it corresponds to a gravitationally confined Boson-Einstein condensate, but of galactic dimensions.
The large dark cores of common dwarf galaxies are unexplained by the standard heavy particle interpretation of dark matter. This puzzle is exacerbated by the discovery of a very large but barely visible, dark matter dominated galaxy Antlia II orbit
We investigate dark-bright vector solitary wave solutions to the coupled non-linear Schrodinger equations which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are well known in non-linear fiber optics, we show
Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations, i.e. the relat
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween
In this work we present a systematic study of the three-dimensional extension of the ring dark soliton examining its existence, stability, and dynamics in isotropic harmonically trapped Bose-Einstein condensates. Detuning the chemical potential from