ﻻ يوجد ملخص باللغة العربية
We estimate the average group morphological and dynamical characteristics of the Percolation-Inferred Galaxy Group (2PIGG) catalogue within z~0.08, for which the group space density is roughly constant. We quantify the different biases that enter in the determination of these characteristics and we devise statistical correction procedures to recover their bias free values. We find that the only acceptable morphological model is that of prolate, or triaxial with pronounced prolatness, group shapes having a roughly Gaussian intrinsic axial ratio distribution with mean ~0.46 and dispersion of ~0.16. After correcting for various biases, the most important of which is a redshift dependant bias, the median values of the virial mass and virial radius of groups with 4 to 30 galaxy members, is: Mv ~6 x 10^12 h_{72}^{-1} M_solar, Rv~ 0.4 h^{-1}_{72} Mpc, which are significantly smaller than recent literature values that do not take into account the previously mentioned biases. The group mean crossing time is ~1.5 Gyrs, independent of the group galaxy membership. We also find that there is a correlation of the group size, velocity dispersion and virial mass with the number of group member galaxies, a manifestation of the hierarchy of cosmic structures.
We analyse the observed correlation between galaxy environment and H-alpha emission line strength, using volume-limited samples and group catalogues of 24968 galaxies drawn from the 2dF Galaxy Redshift Survey (Mb<-19.5) and the Sloan Digital Sky Surv
We apply a halo-based group finder to four large redshift surveys, the 2MRS, 6dFGS, SDSS and 2dFGRS, to construct group catalogs in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment
We present VLT spectroscopic observations of 7 discovered galaxy groups between 0.3<z<0.7. The groups were selected from the Strong Lensing Legacy Survey (SL2S), a survey that consists in a systematic search for strong lensing systems in the Canada-F
Complementary one-, two-, and three-dimensional tests for detecting the presence of substructure in clusters of galaxies are applied to recently obtained data from the 2dF Galaxy Redshift Survey. The sample of 25 clusters used in this study includes
We find that the fraction of early-type galaxies in poor groups (containing from 4 to 10 members) is a weakly increasing function of the number of the group members and is about two times higher than in a sample of isolated galaxies. We also find tha