ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of PSR J0737-3039 on the DNS Merger Rate and Implications for GW Detection

308   0   0.0 ( 0 )
 نشر من قبل Chunglee Kim
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the current estimates of the Galactic merger rate of double-neutron-star (DNS) systems. Using a statistical analysis method, we calculate the probability distribution function (PDF) of the rate estimates, which allows us to assign confidence intervals to the rate estimates. We calculate the Galactic DNS merger rate based on the three known systems B1913+16, B1534+12, and J0737-3039. The discovery of J0737-3039 increases the estimated DNS merger rate by a factor ~6 than what is previously known. The most likely values of DNS merger rate lie in the range 3-190 per Myr depending on different pulsar models. Motivated by a strong correlation between the peak rate estimates and a pulsar luminosity function, we calculate a global probability distribution as a single representation of the parameter space covered by different pulsar population models. We compare the global PDF with the observed supernova Ib/c rate, which sets an upper limit on the DNS merger rate. Finally, we remark on implications of new discoveries such as of J1756-2251, the 4th DNS in the Galactic disk, and J1906+0746, a possible DNS system.



قيم البحث

اقرأ أيضاً

The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (~2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} per Myr at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} per yr at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.
We present the results of a ~230 ks long X-ray observation of the relativistic double-pulsar system PSR J0737-3039 obtained with the XMM-Newton satellite in 2006 October. We confirm the detection in X-rays of pulsed emission from PSR J0737-3039A (PSR A), mostly ascribed to a soft non-thermal power-law component (photon index ~ 3.3) with a 0.2-3 keV luminosity of ~1.9E+30 erg/s (assuming a distance of 500 pc). For the first time, pulsed X-ray emission from PSR J0737-3039B (PSR B) is also detected in part of the orbit. This emission, consistent with thermal radiation with temperature kT=30 eV and a bolometric luminosity of ~1E+32 erg/s, is likely powered by heating of PSR Bs surface caused by PSR As wind. A hotter (~130 eV) and fainter (~5E+29 erg/s) thermal component, probably originating from back-falling particles heating polar caps of either PSR A or PSR B is also required by the data. No signs of X-ray emission from a bow-shock between PSR As wind and the interstellar medium or PSR Bs magnetosphere are present. The upper limit on the luminosity of such a shock component (~1E+29 erg/s) constrains the wind magnetization parameter sigma of PSR A to values greater than 1.
89 - S. Ransom 2004
We report results from Exploratory Time observations of the double-pulsar system PSR J0737-3039 using the Green Bank Telescope (GBT). The large gain of the GBT, the diversity of the pulsar backends, and the four different frequency bands used have al lowed us to make interesting measurements of a wide variety of phenomena. Here we briefly describe results from high-precision timing, polarization, eclipse, scintillation velocity, and single-pulse work.
We revisit the formation of PSR J0737-3039, taking into account the most recent observational constraints. We show that the most likely kick velocity and progenitor parameters depend strongly on the consideration of the full five-dimensional PDF for the magnitude and direction of the kick velocity imparted to pulsar B at birth, the mass of pulsar Bs pre-supernova helium star progenitor, and the pre-supernova orbital separation, and on the adopted prior assumptions. The priors consist of the transverse systemic velocity, the age of the system, and the treatment of the unknown radial velocity. Since the latter cannot be determined from observation, we adopt a statistical approach and use theoretical radial-velocity distributions obtained from population synthesis calculations for coalescing double neutron stars. We find that the prior assumptions about the pre-supernova helium star mass affect the derived most likely parameters significantly: when the minimum helium star mass required for neutron star formation is assumed to be 2.1Msun, the most likely kick velocity ranges from 70-180km/s; when masses lower than 2.1Msun are assumed to allow neutron star formation, the most likely kick velocity can be as low as a few km/s, although the majority of the considered models still yield most likely kick velocities of 50-170km/s. We also show that the proximity of the double pulsar to the Galactic plane and the small proper motion do not pose stringent constraints on the kick velocity and progenitor mass of pulsar B. Instead, the constraints imposed by the orbital dynamics of asymmetric supernova explosions turn out to be much more restrictive. We conclude that the currently available observational constraints cannot be used to favor a specific core-collapse and neutron star formation mechanism. (abridged)
The jet breaks in the afterglow lightcurves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta ($theta_{rm j}$) and hence the neutron star merger rate. In this work we report th e detection of jet decline behaviors in GRB 150424A and GRB 160821B and find $theta_{rm j}sim 0.1$ rad. Together with five events reported before 2015 and other three identified recently (GRB 050709, GRB 060614 and GRB 140903A), we have a sample consisting of nine SGRBs and one long-short GRB with reasonably estimated $theta_{rm j}$. In particular, three {it Swift} bursts in the sample have redshifts $zleq 0.2$, with which we estimate the local neutron star merger rate density {to be $sim 1109^{+1432}_{-657}~{rm Gpc^{-3}~yr^{-1}}$ or $162^{+140}_{-83} {rm Gpc^{-3}yr^{-1}}$ if the narrowly-beamed GRB 061201 is excluded}. Inspired by the typical $theta_{rm j}sim 0.1$ rad found currently, we further investigate whether the off-beam GRBs (in the uniform jet model) or the off-axis events (in the structured jet model) can significantly enhance the GRB/GW association or not. For the former the enhancement is at most moderate, while for the latter the enhancement can be much greater and a high GRB/GW association probability of $sim 10%$ is possible. We also show that the data of GRB 160821B may contain a macronova/kilonova emission component with a temperature of $sim 3100$ K at $sim 3.6$ days after the burst and more data are needed to ultimately clarify.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا