ﻻ يوجد ملخص باللغة العربية
Aims: We have observed the 6030 and 6035 MHz transitions of OH in high-mass star-forming regions to obtain magnetic field estimates in both maser emission and absorption. Methods: Observations were taken with the Effelsberg 100 m telescope. Results: Our observations are consistent with previous results, although we do detect a new 6030 MHz maser feature near -70 km/s in the vicinity of W3(OH). In absorption we obtain a possible estimate of -1.1 +/- 0.3 mG for the average line-of-sight component of the magnetic field in the absorbing OH gas in K3-50 and submilligauss upper limits for the line-of-sight field strength in DR 21 and W3. Conclusions: These results indicate that the magnetic field strength in the vicinity of OH masers is higher than that of the surrounding, non-masing material, which in turn suggests that the density of masing OH regions is higher than that of their surroundings.
(Pseudo) radiative pumprate of OH 1612 MHz masers is defined for a sample of 44 OH/IR sources (infrared sources with OH 1612 MHz maser), irrespective of the real maser pumping mechanisms. The correlation between the (pseudo) maser pumprates and the e
We present a new database of circumstellar OH masers at 1612, 1665, and 1667 MHz in the Milky Way galaxy. The database (version 2.4) contains 13655 observations and 2341 different stars detected in at least one transition. Detections at 1612,MHz are
A study of the distribution of OH gas in the central region of the nearby active starburst galaxy M82 has confirmed two previously known bright masers and revealed several new main line masers. Three of these are seen only at 1665 MHz, one is detecte
We have identified and classified Zeeman pairs in the survey by Argon, Reid, & Menten of massive star-forming regions with 18 cm (2 Pi 3/2, J = 3/2) OH maser emission. We have found a total of more than 100 Zeeman pairs in more than 50 massive star-f
We use accurate quantum mechanical calculations to analyze the effects of parallel electric and magnetic fields on collision dynamics of OH(2Pi) molecules. It is demonstrated that spin relaxation in 3He-OH collisions at temperatures below 0.01 K can