ﻻ يوجد ملخص باللغة العربية
Absorption line studies of galaxies along the line-of-sight to distant quasars allow a direct observational link between the properties of the extended gaseous disk/halo and of the star forming region of galaxies. In these proceedings we review recent work on CaII absorbers detected in the SDSS at 0.4<z<1.3 which, because of their dust content and chemical properties, may lie spatially closer to the central host galaxy than most DLAs. We present direct evidence for the presence of star formation, through observation of the [OII]3727,3730 emission line, in both CaII absorbers and MgII-selected Damped Lyman-alpha (DLA) systems. The measured star formation rate (SFR) from light falling within the SDSS fibre apertures (corresponding to physical radii of 6-9 h^{-1}kpc) is 0.11-0.48 Msol/yr for the CaII-absorbers and 0.11-0.14 Msol/yr for the MgII-selected DLAs. The contribution of both CaII absorbers and DLAs to the total observed SFR density, in the redshift range 0.4 < z < 1.3, is small, <10%. Our result contrasts with recent conclusions, based on the Schmidt law, that DLA absorbers can account for the majority of the total observed SFR density in the same redshift range.
[abridged] Using stacked Sloan Digital Sky Survey spectra, we present the detection of [OII]3727,3730 nebular emission from galaxies hosting CaII and MgII absorption line systems. Both samples of absorbers, 345 CaII systems and 3461 MgII systems, spa
We present observations of CaII, ZnII, and CrII absorption lines in 16 DLAs and 6 subDLAs at 0.6 < z < 1.3, obtained for the dual purposes of: (i) clarifying the relationship between DLAs and absorbers selected via strong CaII lines, and (ii) increas
We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate
This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z=0.4-1.4 star-forming main sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation ra
The goal of the Gemini Deep Deep Survey (GDDS) is to study an unbiased sample of K<20.6 galaxies in the redshift range 0.8<z<2.0. Here we determine the statistical properties of the heavy element enrichment in the interstellar medium (ISM) of a subsa