ﻻ يوجد ملخص باللغة العربية
The optical/near-infrared (OIR) region of the spectra of low-mass X-ray binaries appears to lie at the intersection of a variety of different emission processes. In this paper we present quasi-simultaneous OIR - X-ray observations of 33 XBs in an attempt to estimate the contributions of various emission processes in these sources, as a function of X-ray state and luminosity. A global correlation is found between OIR and X-ray luminosity for low-mass black hole candidate XBs (BHXBs) in the hard X-ray state, of the form L_OIR is proportional to Lx^0.6. This correlation holds over 8 orders of magnitude in Lx and includes data from BHXBs in quiescence and at large distances (LMC and M31). A similar correlation is found in low-mass neutron star XBs (NSXBs) in the hard state. For BHXBs in the soft state, all the near-infrared (NIR) and some of the optical emission is suppressed below the correlation, a behaviour indicative of the jet switching off/on in transition to/from the soft state. We compare these relations to theoretical models of a number of emission processes. We find that X-ray reprocessing in the disc and emission from the jets both predict a slope close to 0.6 for BHXBs, and both contribute to the OIR in BHXBs in the hard state, the jets producing ~90 percent of the NIR emission at high luminosities. X-ray reprocessing dominates the OIR in NSXBs in the hard state, with possible contributions from the jets (only at high luminosity) and the viscously heated disc. We also show that the optically thick jet spectrum of BHXBs extends to near the K-band. (abridged)
When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray bi
Synchrotron emission from jets produced by X-ray binaries can be detected at optical and infrared (IR) frequencies. I show that optical/IR colour-magnitude diagrams of the outbursts of nine X-ray binaries successfully separate thermal disc emission f
Recently, evidence for synchrotron emission in both black hole and neutron star X-ray binaries has been mounting, from optical/infrared spectral, polarimetric, and fast timing signatures. The synchrotron emission of jets can be highly linearly polari
Accreting black holes and neutron stars release an unknown fraction of the infalling particles and energy in the form of collimated jets. The jets themselves are radiatively inefficient, but their power can be constrained by observing their interacti
We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combinati