ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observation of the eclipsing binary Algol

81   0   0.0 ( 0 )
 نشر من قبل Xuejuan Yang
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xue-juan Yang




اسأل ChatGPT حول البحث

We present an {sl XMM-Newton} observation of the eclipsing binary Algol which contains an X-ray dark B8V primary and an X-ray bright K2IV secondary. The observation covered the optical secondary eclipse and captured an X-ray flare that was eclipsed by the B star. The EPIC and RGS spectra of Algol in its quiescent state are described by a two-temperature plasma model. The cool component has a temperature around 6.4$times 10^{6}$ K while that of the hot component ranges from 2 to 4.0$times 10^{7}$ K. Coronal abundances of C, N, O, Ne, Mg, Si and Fe were obtained for each component for both the quiescent and the flare phases, with generally upper limits for S and Ar, and C, N, and O for the hot component. F-tests show that the abundances need not to be different between the cool and the hot component and between the quiescent and the flare phase with the exception of Fe. Whereas the Fe abundance of the cool component remains constant at $sim$0.14, the hot component shows an Fe abundance of $sim$0.28, which increases to $sim$0.44 during the flare. This increase is expected from the chromospheric evaporation model. The absorbing column density $N_H$ of the quiescent emission is 2.5$times10^{20}$ cm$^{-2}$, while that of the flare-only emission is significantly lower and consistent with the column density of the interstellar medium. This observation substantiates earlier suggestions of the presence of X-ray absorbing material in the Algol system.



قيم البحث

اقرأ أيضاً

We report the analysis of an XMM-Newton observation of the close binary HD159176 (O7V + O7V). The observed L_X/L_bol ratio reveals an X-ray luminosity exceeding by a factor ~ 7 the expected value for X-ray emission from single O-stars, therefore sugg esting a wind-wind interaction scenario. EPIC and RGS spectra are fitted consistently with a two temperature mekal optically thin thermal plasma model, with temperatures ranging from ~ 2 to 6 10^6 K. At first sight, these rather low temperatures are consistent with the expectations for a close binary system where the winds collide well before reaching their terminal velocities. We also investigate the variability of the X-ray light curve of HD159176 on various short time scales. No significant variability is found and we conclude that if hydrodynamical instabilities exist in the wind interaction region of HD159176, they are not sufficient to produce an observable signature in the X-ray emission. Hydrodynamic simulations using wind parameters from the literature reveal some puzzling discrepancies. The most striking one concerns the predicted X-ray luminosity which is one or more orders of magnitude larger than the observed one. A significant reduction of the mass loss rate of the components compared to the values quoted in the literature alleviates the discrepancy but is not sufficient to fully account for the observed luminosity. Because hydrodynamical models are best for the adiabatic case whereas the colliding winds in HD159176 are most likely highly radiative, a totally new approach has been envisaged... (see paper for complete abstract)
352 - E. Belsole 2003
We present results from the XMM-Newton observation of the binary cluster A1750 at z = 0.086. We have performed a detailed study of the surface brightness, temperature and entropy distribution and confirm that the two main clusters of the system (A175 0 N and A1750 C) have just started to interact. From the temperature distribution, we calculate that they are likely to merge sometime in the next 1 Gyr. The more massive cluster, A1750 C, displays a more complicated temperature structure than expected. We detect a hot region associated with a density jump ~450 kpc east of the cluster centre, which appears to be a shock wave. This shock is not connected with the binary merger, but it is intrinsic to A1750 C itself. From simple physical arguments and comparison with numerical simulations, we argue that this shock is related to a merging event that A1750 C has suffered in the past 1-2 Gyr. The larger scale structure around A1750 suggests that the system belongs to a rich supercluster, which would presumably increase the likelihood of merger events. These new XMM-Newton data thus show that A1750 is a complex system, where two clusters are starting to interact before having re-established equilibrium after a previous merger. This merger within a merger indicates that the present day morphology of clusters may depend not only on on-going interactions or the last major merging event, but also on the more ancient merger history, especially in dense environments.
The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been observed at several occasions by XMM-Newton during the initial calibration and performance verification (CAL/PV) phase. We present here the results obtained from observatio ns with the EPIC cameras. Apart from several type-I X-ray bursts, the source shows a high degree of variability with the presence of soft flares. The wide energy coverage and high sensitivity of XMM-Newton allows for the first time a detailed description of the spectral variability. The source is found to be the superposition of a central (~2 10^8 cm) Comptonized emission, most probably a corona surrounding the inner edge of an accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a typical temperature of ~0.6 keV with an indication of non-solar abundances. Most of the variations of the source can be accounted for by a variable absorption affecting only the central comptonized component and reaching up to NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found compatible with an irradiated atmosphere of an accretion disc which intercepts the central emission due to the system high inclination.
117 - Gavin Ramsay 2004
We present XMM-Newton observations of the eclipsing polar EP Dra which cover nearly 3 binary orbital cycles. The X-ray and UV data show evidence for a prominent dip before the eclipse which is due to the accretion stream obscuring the accretion regio n. The dip ingress is rapid in hard X-rays suggesting there is a highly collimated core of absorption. We find that a different level of absorption column density is required to match the observed count rates in different energy bands. We propose that this is due to the fact that different absorption components should be used to model the reprocessed X-rays, the shocked X-ray component and the UV emission and explore the affect that this has on the resulting fits to the spectrum. Further, there is evidence that absorption starts to obscure the softer X-rays shortly after the onset of the bright phase. This suggests that material is threaded by an unusually wide range of magnetic field lines, consistent with the suggestion of Bridge et al. We find that the period is slightly greater than that determined by Schwope & Mengel.
We report on the first XMM-Newton observation of the bright Narrow-Line Seyfert 1 galaxy Mrk 110. We find a narrow Fe K fluorescent line, a broad component FWHM ~ 16500 km/s of the OVII triplet, either due to infall motions or gravitational redshift effects in the vicinity of the central black hole, a Comptonized accretion disc layer, and a strong starburst component. If the broad redshifted soft X-ray components are due to gravitational redshift effects, the distance of the line emitting regions ranges between about 0.2 and 1 light day with respect to the central black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا