ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometrical Distance Determination using Type I X-ray Bursts

340   0   0.0 ( 0 )
 نشر من قبل Thomas Thompson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the excellent angular resolution of the Chandra X-ray Observatory, it is possible to geometrically determine the distance to variable Galactic sources, based on the phenomenon that scattered radiation appearing in the X-ray halo has to travel along a slightly longer path than the direct, unscattered radiation. By measuring the delayed variability, constraints on the source distance can be obtained if the halo brightness is large enough to dominate the point spread function (PSF) and to provide sufficient statistics. The distance to Cyg X-3, which has a quasi-sinusoidal light curve, has been obtained with this approach by Predehl et al. Here we examine the feasibility of using the delayed signature of type I X-ray bursts as distance indicators. We use simulations of delayed X-ray burst light curves in the halo to find that the optimal annular region and energy band for a distance measurement with a grating observation is roughly 10-50 and 1-5 keV respectively, assuming Chandras effective area and PSF, uniformly distributed dust, the input spectrum and optical depth to GX 13+1, and the Weingartner & Draine interstellar grain model. We find that the statistics are dominated by Poisson noise rather than systematic uncertainties, e.g., the PSF contribution to the halo. Using Chandra, a distance measurement to such a source at 4 (8) kpc could be made to about 23% (30%) accuracy with a single burst with 68% confidence. By stacking many bursts, a reasonable estimate of systematic errors limit the distance measurement to about 10% accuracy.



قيم البحث

اقرأ أيضاً

197 - A. Parikh , J. Jose , G. Sala 2012
Type I X-ray bursts are thermonuclear explosions that occur in the envelopes of accreting neutron stars. Detailed observations of these phenomena have prompted numerous studies in theoretical astrophysics and experimental nuclear physics since their discovery over 35 years ago. In this review, we begin by discussing key observational features of these phenomena that may be sensitive to the particular patterns of nucleosynthesis from the associated thermonuclear burning. We then summarize efforts to model type I X-ray bursts, with emphasis on determining the nuclear physics processes involved throughout these bursts. We discuss and evaluate limitations in the models, particularly with regard to key uncertainties in the nuclear physics input. Finally, we examine recent, relevant experimental measurements and outline future prospects to improve our understanding of these unique environments from observational, theoretical and experimental perspectives.
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and black holes. Neutron stars are of particular observational interest, as they exhibit surface effects giving rise to phenomena (thermonuclear bursts and pulsations) not seen in black holes. Here we briefly review the present understanding of thermonuclear (type-I) X-ray bursts. These events are powered by an extensive chain of nuclear reactions, which are in many cases unique to these environments. Thermonuclear bursts have been exploited over the last few years as an avenue to measure the neutron star mass and radius, although the contribution of systematic errors to these measurements remains contentious. We describe recent efforts to better match burst models to observations, with a view to resolving some of the astrophysical uncertainties related to these events. These efforts have good prospects for providing complementary information to nuclear experiments.
173 - Jordi Jose 2010
Type I X-ray bursts are thermonuclear stellar explosions driven by charged-particle reactions. In the regime for combined H/He-ignition, the main nuclear flow is dominated by the rp-process (rapid proton-captures and beta+ decays), the 3 alpha-reacti on, and the alpha-p-process (a suite of (alpha,p) and (p,gamma) reactions). The main flow is expected to proceed away from the valley of stability, eventually reaching the proton drip-line beyond A = 38. Detailed analysis of the relevant reactions along the main path has only been scarcely addressed, mainly in the context of parameterized one-zone models. In this paper, we present a detailed study of the nucleosynthesis and nuclear processes powering type I X-ray bursts. The reported 11 bursts have been computed by means of a spherically symmetric (1D), Lagrangian, hydrodynamic code, linked to a nuclear reaction network that contains 325 isotopes (from 1H to 107Te), and 1392 nuclear processes. These evolutionary sequences, followed from the onset of accretion up to the explosion and expansion stages, have been performed for 2 different metallicities to explore the dependence between the extension of the main nuclear flow and the initial metal content. We carefully analyze the dominant reactions and the products of nucleosynthesis, together with the the physical parameters that determine the light curve (including recurrence times, ratios between persistent and burst luminosities, or the extent of the envelope expansion). Results are in qualitative agreement with the observed properties of some well-studied bursting sources. Leakage from the predicted SbSnTe-cycle cannot be discarded in some of our models. Production of 12C (and implications for the mechanism that powers superbursts), light p-nuclei, and the amount of H left over after the bursting episodes will also be discussed.
We observed the Rapid Burster with Chandra when it was in the banana state that usually precedes the type-II X-ray bursting island state for which the source is particularly known. We employed the High-Energy Transmission Grating Spectrometer in comb ination with the ACIS-S detector in continuous clocking mode. The observation yielded 20 thermonuclear type-I X-ray bursts emitted from the neutron star surface with recurrence times between 0.9 and 1.2 hr, and an e-folding decay time scale of 1 min. We searched for narrow spectral features in the burst emission that could constrain the composition of the ashes of the nuclear burning and the compactness of the neutron star, but found none. The upper limit on the equivalent width of narrow absorption lines between 2 and 6 keV is between 5 and 20 eV (single trial 3 sigma confidence level) and on those of absorption edges between 150 and 400 eV. The latter numbers are comparable to the levels predicted by Weinberg, Bildsten & Schatz (2006) for Eddington-limited thermonuclear bursts.
We perform a set of numerical experiments studying the interaction of Type I X-ray bursts with thin, Shakura-Sunyaev type accretion discs. Careful observations of X-ray spectra during such bursts have hinted at changes occurring in the inner regions of the disc. We now clearly demonstrate a number of key effects that take place simultaneously, including: evidence for weak, radiation-driven outflows along the surface of the disc; significant levels of Poynting-Robertson (PR) drag, leading to enhanced accretion; and prominent heating in the disc, which increases the height, while lowering the density and optical depth. The PR drag causes the inner edge of the disc to retreat from the neutron star surface toward larger radii and then recover on the timescale of the burst. We conclude that the rich interaction of an X-ray burst with the surrounding disc provides a novel way to study the physics of accretion onto compact objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا