ﻻ يوجد ملخص باللغة العربية
Aims. The clustering properties of a large sample of U-dropouts are investigated and compared to very precise results for B-dropouts from other studies to identify a possible evolution from z=4 to z=3. Methods. A population of ~8800 candidates for star-forming galaxies at z=3 is selected via the well-known Lyman-break technique from a large optical multicolour survey (the ESO Deep Public Survey). The selection efficiency, contamination rate, and redshift distribution of this population are investigated by means of extensive simulations. Photometric redshifts are estimated for every Lyman-break galaxy (LBG) candidate from its UBVRI photometry yielding an empirical redshift distribution. The measured angular correlation function is deprojected and the resulting spatial correlation lengths and slopes of the correlation function of different subsamples are compared to previous studies. Results. By fitting a simple power law to the correlation function we do not see an evolution in the correlation length and the slope from other studies at z=4 to our study at z=3. In particular, the dependence of the slope on UV-luminosity similar to that recently detected for a sample of B-dropouts is confirmed also for our U-dropouts. For the first time number statistics for U-dropouts are sufficient to clearly detect a departure from a pure power law on small scales down to ~2 reported by other groups for B-dropouts.
We present first results of our search for high-redshift galaxies in deep CCD mosaic images. As a pilot study for a larger survey, very deep images of the Chandra Deep Field South (CDFS), taken withWFI@MPG/ESO2.2m, are used to select large samples of
Aims. We present a cosmic shear analysis and data validation of 15 square degree high-quality R-band data of the Garching-Bonn Deep Survey obtained with the Wide Field Imager of the MPG/ESO 2.2m telescope. Methods. We measure the two-point shear corr
[ABRIDGED] The weak gravitational lensing effect is used to infer matter density fluctuations within the field-of-view of the Garching-Bonn Deep Survey (GaBoDS). This information is employed for a statistical comparison of the galaxy distribution to
We present our image processing system for the reduction of optical imaging data from multi-chip cameras. In the framework of the Garching Bonn Deep Survey (GaBoDS; Schirmer et al. 2003) consisting of about 20 square degrees of high-quality data from
The Garching-Bonn Deep Survey (GaBoDS) is a virtual 12 square degree cosmic shear and cluster lensing survey, conducted with the
[email protected] MPG/ESO telescope at La Silla. It consists of shallow, medium and deep random fields taken in R-band in subarcse