ﻻ يوجد ملخص باللغة العربية
In recent years, gravitational lensing has been used as a means to detect substructure in galaxy-sized halos, via anomalous flux ratios in quadruply-imaged lenses. In addition to causing anomalous flux ratios, substructure may also perturb the positions of lensed images at observable levels. In this paper, we numerically investigate the scale of such astrometric perturbations using realistic models of substructure distributions. Substructure distributions that project clumps near the Einstein radius of the lens result in perturbations that are the least degenerate with the best-fit smooth macromodel, with residuals at the milliarcsecond scale. Degeneracies between the center of the lens potential and astrometric perturbations suggest that milliarcsecond constraints on the center of the lensing potential boost the observed astrometric perturbations by an order of magnitude compared to leaving the center of the lens as a free parameter. In addition, we discuss methods of substructure detection via astrometric perturbations that avoid full lens modeling in favor of local image observables and also discuss modeling of systems with luminous satellites to constrain the masses of those satellites.
To set useful limits on the abundance of small-scale dark matter halos (subhalos) in a galaxy scale, we have carried out mid-infrared imaging and integral-field spectroscopy for a sample of quadruple lens systems showing anomalous flux ratios. These
The inversion of gravitational lens systems is hindered by the fact that multiple mass distributions are often equally compatible with the observed properties of the images. Besides using clear examples to illustrate the effect of the so-called monop
We study the application of machine learning techniques for the detection of the astrometric signature of dark matter substructure. In this proof of principle a population of dark matter subhalos in the Milky Way will act as lenses for sources of ext
In this work we investigate the gravitationally lensed system B1422+231. High--quality VLBI image positions, fluxes and shapes as well as an optical HST lens galaxy position are used. First, two simple and smooth models for the lens galaxy are applie
Spatially resolved spectroscopic data from the CIRPASS integral field unit (IFU) on Gemini are used to measure the gravitational lensing of the 4-image quasar Q2237+0305 on different size scales. A method for measuring the substructure present in the