ﻻ يوجد ملخص باللغة العربية
Aims. Search for Very High Energy gamma-ray emission in the Kookaburra complex through observations with the H.E.S.S. array. Methods. Stereoscopic imaging of Cherenkov light emission of the gamma-ray showers in the atmosphere is used for the reconstruction and selection of the events to search for gamma-ray signals. Their spectrum is derived by a forward-folding maximum likelihood fit. Results. Two extended gamma-ray sources with an angular (68%) radius of 3.3-3.4 are discovered at high (>13sigma) statistical significance: HESS J1420-607 and HESS J1418-609. They exhibit a flux above 1 TeV of (2.97+/-0.18stat +/-0.60sys)x10-12 and (2.17+/-0.17stat +/-0.43sys)x10-12 cm-2 s-1, respectively, and similar hard photon indices ~2.2. Multi-wavelength comparisons show spatial coincidence with the wings of the Kookaburra. Two pulsar wind nebulae candidates, K3/PSR J1420-6048 and the Rabbit, lie on the edge of the H.E.S.S. sources. Conclusions. The two new sources confirm the non-thermal nature of at least parts of the two radio wings which overlap with the gamma-ray emission and establish their connection with the two X-ray pulsar wind nebulae candidates. Given the large point spread function of EGRET, the unidentified source(s) 3EG J1420-6038/GeV J1417-6100 could possibly be related to either or both H.E.S.S. sources. The most likely explanation for the Very High Energy gamma-rays discovered by H.E.S.S. is inverse Compton emission of accelerated electrons on the Cosmic Microwave Background near the two candidate pulsar wind nebulae, K3/PSR J1420-6048 and the Rabbit. Two scenarios which could lead to the observed large (~10 pc) offset-nebula type morphologies are briefly discussed.
The quasar PKS 1510-089 (z=0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E >= 0.1 TeV) emission. VHE gamma-rays
Most of the extragalactic objects detected so far in the very high energy (VHE) regime are blazars, but the discovered nearby radio galaxies: M87, Cen A and NGC 1275 of type FRI seem to constitute a new class of VHE emitters. The radio galaxy PKS 062
The on-going H.E.S.S. Galactic Plane Survey continues to reveal new sources of VHE gamma-rays. In particular, recent re-observations of the region around the shell-type supernova remnant (SNR) G318.2+0.1 have resulted in the discovery of statisticall
The W49 region hosts two bright radio sources: the star forming region W49A and the supernova remnant W49B. The 10^6 M_odot Giant Molecular Cloud W49A is one of the most luminous giant radio HII regions in our Galaxy and hosts several active, high-ma
Supernova remnants (SNRs) have emerged as one of the largest source classes in very-high-energy (VHE; E>0.1,TeV) astronomy. Many of the now known VHE gamma-ray emitting SNRs have been discovered by the H.E.S.S. imaging Cherenkov telescope array, than