ﻻ يوجد ملخص باللغة العربية
We present deep radio observations of the most distant complete quasar sample drawn from the Sloan Digital Sky Survey. Combining our new data with those from literature we obtain a sample which is ~100 per cent complete down to S_1.4GHz = 60 mu Jy over the redshift range 3.8 < z < 5. The fraction of radio detections is relatively high (~43 per cent), similar to what observed locally in bright optical surveys. Even though the combined radio and optical properties of quasars remain overall unchanged from z ~ 5 to the local Universe, there is some evidence for a slight over-abundance of radio-loud sources at the highest redshifts when compared with the lower-z regime. Exploiting the deep radio VLA observations we present the first attempt to directly derive the radio luminosity function of bright quasars at z ~ 4. The unique depth -- both in radio and optical -- allows us to thoroughly explore the population of optically bright FR~II quasars up to z ~ 5 and opens a window on the behaviour of the brightest FR~I sources. A close investigation of the space density of radio loud quasars also suggests a differential evolution, with the more luminous sources showing a less pronounced cut-off at high z when compared with the less luminous ones.
We report on exploratory Chandra observations of the three highest redshift quasars known (z = 5.82, 5.99, and 6.28), all found in the Sloan Digital Sky Survey. These data, combined with a previous XMM-Newton observation of a z = 5.74 quasar, form a
We report spectral, imaging, and variability results from four new XMM-Newton observations and two new Chandra observations of high-redshift (z > 4) radio-loud quasars (RLQs). Our targets span lower, and more representative, values of radio loudness
We present a new radio sample, 6C** designed to find radio galaxies at z > 4 and discuss some of its near-infrared imaging follow-up results.
Although radio-quiet quasars (RQQs) constitute >90% of optically-identified quasar samples their radio properties are only poorly understood. In this paper we present the results of a multi-frequency VLA study of 27 low-redshift RQQs. We detect radio
Although radio-quiet quasars (RQQs), which constitute the majority of optically-identified quasar samples, are by no means radio silent the properties of their radio emission are only poorly understood. We present the results of a multi-frequency VLA