ﻻ يوجد ملخص باللغة العربية
Most statistical tools used to characterize the complex structures of the interstellar medium can be related to the power spectrum, and therefore to the Fourier amplitudes of the observed fields. To tap into the vast amount of information contained in the Fourier phases, one may consider the probability distribution function (PDF) of phase increments, and the related concepts of phase entropy and phase structure quantity. We use these ideas here with the purpose of assessing the ability of radio-interferometers to detect and recover this information. By comparing current arrays such as the VLA and Plateau de Bure to the future ALMA instrument, we show that the latter is definitely needed to achieve significant detection of phase structure, and that it will do so even in the presence of a fair amount of atmospheric phase fluctuations. We also show that ALMA will be able to recover the actual amount of phase structure in the noise-free case, if multiple configurations are used.
Fourier phases contain a vast amount of information about structure in direct space, that most statistical tools never tap into. We address ALMAs ability to detect and recover this information, using the probability distribution function (PDF) of pha
Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes
{em Quantum Fourier analysis} is a new subject that combines an algebraic Fourier transform (pictorial in the case of subfactor theory) with analytic estimates. This provides interesting tools to investigate phenomena such as quantum symmetry. We est
This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of thi
This paper presents a detailed analysis of the applicability and benefits of baseline dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array (SKA). We demonstrate that BDA does not affect the informatio