ترغب بنشر مسار تعليمي؟ اضغط هنا

APEX CO(3-2) observations of NGC6822

161   0   0.0 ( 0 )
 نشر من قبل Sven de Rijcke
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed the CO(3-2) emission of the emission-line regions HubbleI, HubbleV, HubbleX, Holmberg 18, and the stellar emission-line object S28 in NGC6822 with the ESO Atacama Pathfinder Experiment (APEX) 12m telescope as part of its science verification. The very low system temperature of 130-180K enabled us to achieve detections in 4 single pointings and in a high spatial resolution 70x70 map of HubbleV. We compare the spectra with HI observations, obtained with the Australia Telescope Compact Array, of the same regions. In combination with previous multi-line CO observations, we perform a preliminary investigation of the physical conditions in HubbleV using a simple LTE model. We estimate the mass of the HubbleV region and the H_2/I_CO(3-2) conversion factor. Also, we show that HubbleV is located very near the line-width versus size relation traced by the Milky Way and LMC molecular clouds.



قيم البحث

اقرأ أيضاً

The edges of ionized (HII) regions are important sites for the formation of (high-mass) stars. Indeed, at least 30% of the galactic high mass star formation is observed there. The radiative and compressive impact of the HII region could induce the st ar formation at the border following different mechanisms such as the Collect & Collapse (C&C) or the Radiation Driven Implosion (RDI) models and change their properties. We study the properties of two zones located in the Photo Dissociation Region (PDR) of the Galactic HII region RCW120 and discussed them as a function of the physical conditions and young star contents found in both clumps. Using the APEX telescope, we mapped two regions of size 1.5$times$1.5 toward the most massive clump of RCW120 hosting young massive sources and toward a clump showing a protrusion inside the HII region and hosting more evolved low-mass sources. The $^{12}$CO($J=3-2$), $^{13}$CO($J=3-2$) and C$^{18}$O($J=3-2$) lines are used to derive the properties and dynamics of these clumps. We discuss their relation with the hosted star-formation. The increase of velocity dispersion and $T_{ex}$ are found toward the center of the maps, where star-formation is observed with Herschel. Furthermore, both regions show supersonic Mach number. No strong evidences have been found concerning the impact of far ultraviolet (FUV) radiation on C$^{18}$O photodissociation. The fragmentation time needed for the C&C to be at work is equivalent to the dynamical age of RCW120 and the properties of region B are in agreement with bright-rimmed clouds. It strengthens the fact that, together with evidences of compression, C&C might be at work at the edges of RCW120. Additionally, the clump located at the eastern part of the PDR is a good candidate of pre-existing clump where star-formation may be induced by the RDI mechanism.
Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the cir cumstellar shells of evolved stars with the aim to estimate their physical parameters. Methods. Millimetre carbon monoxide (CO) emission is the most useful probe of the warm molecular component ejected by low- to intermediate-mass stars. CO is the second-most abundant molecule in the Universe, and the millimeter transitions are easily excited, thus making it particularly useful to study the mass, structure, and kinematics of the molecular gas. We present a large survey of the CO (J = 3 - 2) line using the Atacama Pathfinder EXperiment (APEX) telescope in a sample of 93 proto-planetary nebulae and planetary nebulae. Results. CO (J = 3 - 2) was detected in 21 of the 93 objects. Conclusions. CO (J = 3 - 2) was detected in all 4 observed pPNe (100%), 15 of the 75 PNe (20%), one of the 4 wide binaries (25%), and in 1 of the 10 close binaries (10%). Using the CO (J = 3 - 2) line, we estimated the column density and mass of each source.
Context : Highly-collimated outflows are believed to be the earliest stage in outflow evolution, so their study is essential for understanding the processes driving outflows. The BHR71 Bok globule is known to harbour such a highly-collimated outflow, which is powered by a protostar belonging to a protobinary system. Aims : We aimed at investigating the interaction of collimated outflows with the ambient molecular cloud by using molecular tracers. Methods : We mapped the BHR71 highly-collimated outflow in CO(3-2) with the APEX telescope, and observed several bright points of the outflow in the molecular transitions CO(4-3), 13CO(3-2), C18O(3-2), and CH3OH(7-6). We use an LVG code to characterise the temperature enhancements in these regions. Results : In our CO(3-2) map, the second outflow driven by IRS2, which is the second source of the binary system, is completely revealed and shown to be bipolar. We also measure temperature enhancements in the lobes. The CO and methanol LVG modelling points to temperatures between 30 and 50K in the IRS1 outflow, while the IRS2 outflow seems to be warmer (up to 300K).
We present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC 1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1 -0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 {mu}m dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.
123 - S. Matsushita 2004
We present the first interferometric CO(J=3-2) observations (beam size of 3.9x1.6 or 160pc x 65pc) with the Submillimeter Array (SMA) toward the center of the Seyfert 2 galaxy M51. The image shows a strong concentration at the nucleus and weak emissi on from the spiral arm to the northwest. The integrated intensity of the central component in CO(J=3-2) is almost twice as high as that in CO(J=1-0), indicating that the molecular gas within an ~80 pc radius of the nucleus is warm (>~100 K) and dense (~10^4 cm^-3). Similar intensity ratios are seen in shocked regions in our Galaxy, suggesting that these gas properties may be related to AGN or starburst activity. The central component shows a linear velocity gradient (~1.4 km/s/pc) perpendicular to the radio continuum jet, similar to that seen in previous observations and interpreted as a circumnuclear molecular disk/torus around the Seyfert 2 nucleus. In addition, we identify a linear velocity gradient (~0.7 km/s/pc) along the jet. Judging from the energetics, the velocity gradient can be explained by supernova explosions or energy and momentum transfer from the jet to the molecular gas via interaction, which is consistent with the high intensity ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا