ﻻ يوجد ملخص باللغة العربية
We investigate the influence of both a new generation of low-temperature opacities and of various amounts of alpha-element enhancements on stellar evolution models. New stellar models with two different alpha-element mixtures and two sets of appropriate opacity tables are computed and compared. The influence of the different mixtures as well as that of the improved generation of opacity tables is investigated. It is found that around solar metallicity the new opacity tables have a drastic influence on stellar temperatures, which is mainly an effect of the new low-temperature tables, and not of variations in alpha-element enhancement factors. The latter, however, influence stellar lifetimes via systematic opacity effects at core temperatures. We trace the reason for the low-temperature table changes to errors in the old tables. We conclude that variations in alpha-element abundance ratios affect the main-sequence properties of super-solar metallicity stars significantly. Red giant branch effective temperatures depend only slightly on the specific mixture. Our older low-temperature opacity tables were shown to be erroneous and should no longer be used for stellar models with near- or super-solar metallicity. Corrected tables have already been produced.
[Abridged] We calculate the structural evolution and nucleosynthesis of a grid of models covering the metallicity range: -6.5 < [Fe/H] < -3.0 (plus Z=0), and mass range: 0.85 < M < 3.0 Msun, amounting to 20 stars in total. In this paper, the first of
We present the first models allowing one to explore in a consistent way the influence of changes in the alpha-element-to-iron abundance ratio on the high-resolution spectral properties of evolving stellar populations. The models cover the wavelength
[Abridged] We present a large, new set of stellar evolution models and isochrones for an alpha-enhanced metal distribution typical of Galactic halo and bulge stars; it represents a homogeneous extension of our stellar model library for a distribution
This is the second paper of a series devoted to present an updated release of the BaSTI ( a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library. Following the publication of the updated solar scaled library, here we present the
Based on the second Gaia data release (DR2) and APOGEE (DR16) spectroscopic surveys, wedefined two kinds of star sample: high-velocity thick disk (HVTD) with $v{phi}>90km/s$ and metal-richstellar halo (MRSH) with $v{phi}<90km/s$. Due to high resoluti