ﻻ يوجد ملخص باللغة العربية
We report the discovery of five new dwarf novae from the Hamburg Quasar Survey (HQS), and discuss the properties of the sample of dwarf novae in the HQS. The orbital periods of the new dwarf novae are ~105.1 min or ~109.9 min, 114.3+-2.7 min, 92.66+-0.17 min, 272.317+-0.001 min, 258.02+-0.56 min for HS0417+7445, HS1016+3412, HS1340+1524, HS1857+7127, and HS2214+2845, respectively. HS1857+7127 is found to be partially eclipsing. In HS2214+2845 the secondary star of spectral type M3+-1 is clearly detected, and we estimate the distance to the system to be d=390+-40 pc. We recorded one superoutburst of the SU UMa system HS0417+7445. HS1016+3412 and HS1340+1524 have rare outbursts, and their subtype is yet undetermined. HS1857+7127 frequently varies in brightness and may be a Z Cam-type dwarf nova. HS2214+2845 is a U Gem-type dwarf nova with a most likely cycle length of 71 d. To date, 14 new dwarf novae have been identified in the HQS. The ratio of short-period (<3 h) to long-period (>3 h) systems of this sample is 1.3, much smaller compared to the ratio of 2.7 found for all known dwarf novae. The HQS dwarf novae display typically infrequent or low-amplitude outburst activity, underlining the strength of spectroscopic selection in identifying new CVs independently of their variability. The spectroscopic properties of short-period CVs in the HQS suggest that most of them are still evolving towards the minimum period. Their total number agrees with the predictions of population models within an order of magnitude. However, the bulk of all CVs is predicted to have evolved past the minimum period, and those systems remain unidentified. Those post-bounce systems may have markedly weaker Hbeta emission lines compared to the average known short-period CVs, and probably undergo no or extremely rare outbursts.
We present the analysis of the spectroscopic observations of a newly discovered cataclysmic variable HS0551+7241. In 1995 the stars brightness dropped by Delta(B)~2.5 mag and HS0551+7241 entered a low state lasting for ~2 yr. The H-alpha, H-beta and
Galaxies are complex systems the evolution of which apparently results from the interplay of dynamics, star formation, chemical enrichment, and feedback from supernova explosions and supermassive black holes. The hierarchical theory of galaxy formati
We systematically surveyed period variations of superhumps in SU UMa-type dwarf novae based on newly obtained data and past publications. In many systems, the evolution of superhump period are found to be composed of three distinct stages: early evol
We detect angular galaxy-QSO cross-correlations between the APM Galaxy Catalogue and a preliminary release (consisting of roughly half of the anticipated final catalogue) of the Hamburg-ESO Catalogue of Bright QSOs as a function of source QSO redshif
Dwarf novae (DNe) and X-ray binaries exhibit outbursts thought to be due to a thermal-viscous instability in the accretion disk. The disk instability model (DIM) assumes that accretion is driven by turbulent transport, customarily attributed to the m