ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction Limited Imaging Spectroscopy of the SgrA* Region using OSIRIS, a new Keck Instrument

253   0   0.0 ( 0 )
 نشر من قبل Alfred Krabbe
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Krabbe




اسأل ChatGPT حول البحث

We present diffraction limited spectroscopic observations of an infrared flare associated with the radio source SgrA*. These are the first results obtained with OSIRIS, the new facility infrared imaging spectrograph for the Keck Observatory operated with the laser guide star adaptive optics system. After subtracting the spectrum of precursor emission at the location of Sgr A*, we find the flare has a spectral index of -2.6 +- 0.9. If we do not subtract the precursor light, then our spectral index is consistent with earlier observations by Ghez et al. (2005). All observations published so far suggest that the spectral index is a function of the flares K-band flux.



قيم البحث

اقرأ أيضاً

182 - L. Prato 2000
This paper presents diffraction-limited 1-18 micron images of the young quadruple star system HD 98800 obtained with the W. M. Keck 10-m telescopes using speckle and adaptive optics imaging at near-IR wavelengths and direct imaging at mid-IR waveleng ths. The two components of the visual binary, A and B, both themselves spectroscopic binaries, were separable at all wavelengths, allowing us to determine their stellar and circumstellar properties. Combining these observations with spectroscopic data from the literature, we derive an age of 10 Myr, masses of 0.93 and 0.64 M_sun and an inclination angle of 58 deg for the spectroscopic components of HD 98800 B, and an age of 10 Myr and a mass of 1.1 M_sun for HD 98800 Aa. Our data confirm that the large mid-IR excess is entirely associated with HD 98800 B. This excess exhibits a black body temperature of 150 K and a strong 10 micron silicate emission feature. The theoretical equilibrium radius of large, perfectly absorbing, 150 K grains around HD 98800 B is 2.4 AU, suggesting a circum-spectroscopic binary distribution. Our observations set important upper limits on the size of the inner dust radius of ~2 AU (mid-IR data) and on the quantity of scattered light of <10% (H-band data). For an inner radius of 2 AU, the dust distribution must have a height of at least 1 AU to account for the fractional dust luminosity of ~20% L_B. Based on the scattered light limit, the dust grains responsible for the excess emission must have an albedo of <0.33. The presence of the prominent silicate emission feature at 10 microns implies dust grain radii of >2 microns. The total mass of the dust, located in a circumbinary disk around the HD 98800 B, is >0.002 M_earth. The orbital dynamics of the A-B pair are likely responsible for the disk geometry.
241 - Etsuko Mieda 2014
OSIRIS is a near-infrared integral field spectrograph operating behind the adaptive optics system at W. M. Keck Observatory. While OSIRIS has been a scientifically productive instrument to date, its sensitivity has been limited by a grating efficienc y that is less than half of what was expected. The spatially averaged efficiency of the old grating, weighted by error, is measured to be 39.5 +/- 0.8 % at {lambda} = 1.310 {mu}m, with large field dependent variation of 11.7 % due to efficiency variation across the grating surface. Working with a new vendor, we developed a more efficient and uniform grating with a weighted average efficiency at {lambda} = 1.310 {mu}m of 78.0 +/- 1.6 %, with field variation of only 2.2 %. This is close to double the average efficiency and five times less variation across the field. The new grating was installed in December 2012, and on- sky OSIRIS throughput shows an average factor of 1.83 improvement in sensitivity between 1 and 2.4 microns. We present the development history, testing, and implementation of this new near-infrared grating for OSIRIS and report the comparison with the predecessors. The higher sensitivities are already having a large impact on scientific studies with OSIRIS.
55 - J. D. Monnier , 2000
We present multi-epoch, diffraction-limited images of the nebula around the carbon star CIT 6 at 2.2 microns and 3.1 microns from aperture masking on the Keck-I telescope. The near-IR nebula is resolved into two main components, an elongated, bright feature showing time-variable asymmetry and a fainter component about 60 milliarcseconds away with a cooler color temperature. These images were precisely registered (~35 milliarcseconds) with respect to recent visible images from the Hubble Space Telescope (Trammell et al. 2000), which showed a bipolar structure in scattered light. The dominant near-IR feature is associated with the northern lobe of this scattering nebula, and the multi-wavelength dataset can be understood in terms of a bipolar dust shell around CIT 6. Variability of the near-IR morphology is qualitatively consistent with previously observed changes in red polarization, caused by varying illumination geometry due to non-uniform dust production. The blue emission morphology and polarization properties can not be explained by the above model alone, but require the presence of a wide binary companion in the vicinity of the southern polar lobe. The physical mechanisms responsible for the breaking of spherical symmetry around extreme carbon stars, such as CIT 6 and IRC+10216, remain uncertain.
We present a high-contrast imaging search for Pa$beta$ line emission from protoplanets in the PDS~70 system with Keck/OSIRIS integral field spectroscopy. We applied the high-resolution spectral differential imaging technique to the OSIRIS $J$-band da ta but did not detect the Pa$beta$ line at the level predicted using the parameters of cite{Hashimoto2020}. This lack of Pa$beta$ emission suggests the MUSE-based study may have overestimated the line width of H$alpha$. We compared our Pa$beta$ detection limits with the previous H$alpha$ flux and H$beta$ limits and estimated $A_{rm V}$ to be $sim0.9$ and 2.0 for PDS~70~b and c respectively. In particular, PDS~70~bs $A_{rm V}$ is much smaller than implied by high-contrast near-infrared studies, which suggests the infrared-continuum photosphere and the hydrogen-emitting regions exist at different heights above the forming planet.
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fo urier transform spectrometer covering the spectral range 5.71 - 100 {mu}m (1750 - 100 cm-1) with a spectral sample interval of 8.66 cm-1 and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated L-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 {mu}m laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is <= 2.2 x 10-8 W cm-2 sr-1/cm-1 between 300 and 1350 cm-1. The absolute integrated radiance error is <1% for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is 37.5 x 28.9 x 52.2 cm, and the mass is 6.27 kg. The power consumption is 10.8 W average. The OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا