ﻻ يوجد ملخص باللغة العربية
We present a proper motion mini-survey of 35 fields in the vicinity of Baade window, (l, b) = (1 deg, -4 deg), sampling roughly a 5 x 2.5 deg region of the Galactic bar. Our second epoch observations collected with the ACS/HRC instrument on board the Hubble Space Telescope were combined with the archival WFPC2/PC images. The resulting time baselines are in the range of 4 - 8 years. Precise proper motions of 15,863 stars were determined in the reference frame defined by the mean motion of stars with magnitudes between I_F814W = 16.5 - 21.5 along the line of sight. We clearly detect small gradients in proper motion dispersions (sigma_l, sigma_b) ~ (3.0, 2.5) mas/yr, and in the amount of anisotropy (sigma_l/sigma_b ~ 1.2). Both the longitude dispersion sigma_l and its ratio to the vertical motion sigma_b increase toward the Galactic plane. The decline of the anisotropy ratio sigma_l/sigma_b toward the minor axis of the bulge is mostly due to increasing sigma_b. We also find, for the first time, a significant negative covariance term in the transverse velocity field sigma_lb/(sigma_l*sigma_b) ~ -0.10. Our results extend by a factor of ~15 the number of the Galactic bar fields with good proper motion dispersions.
Proper motions (PMs) are crucial to fully understand the internal dynamics of globular clusters (GCs). To that end, the Hubble Space Telescope (HST) Proper Motion (HSTPROMO) collaboration has constructed large, high-quality PM catalogues for 22 Galac
We present stellar proper motions in the Galactic bulge from the Sagittarius Window Eclipsing Extrasolar Search (SWEEPS) project using ACS/WFC on HST. Proper motions are extracted for more than 180,000 objects, with >81,000 measured to accuracy bette
Aims. This is the second in a series of papers that attempt to unveil the kinematic structure of the Galactic bulge through studying radial velocities and proper motions. We report here ~15000 new proper motions for three low foreground-extinction of
We report a new analysis of stellar dynamics in the Galactic centre, based on improved sky and LOS velocities for >100 stars within a few arcsec of SgrA*. Overall the motions do not deviate strongly from isotropy. For 32 stars with all 3 components d
Our location in the Milky Way provides an exceptional opportunity to gain insight on the galactic evolution processes, and complement the information inferred from observations of external galaxies. Since the Milky Way is a barred galaxy, the study o