ﻻ يوجد ملخص باللغة العربية
The properties of the type Ic supernova SN 1994I are re-investigated. This object is often referred to as a standard SN Ic although it exhibited an extremely fast light curve and unusually blue early-time spectra. In addition, the observations were affected by significant dust extinction. A series of spectral models are computed based on the explosion model CO21 (Iwamoto et al. 1994) using a Monte Carlo transport spectral synthesis code. Overall the density structure and abundances of the explosion model are able to reproduce the photospheric spectra well. Reddening is estimated to be E(B-V)=0.30 mag, a lower value than previously proposed. A model of the nebular spectrum of SN 1994I points toward a slightly larger ejecta mass than that of CO21. The photospheric spectra show a large abundance of iron-group elements at early epochs, indicating that mixing within the ejecta must have been significant. We present an improved light curve model which also requires the presence of 56Ni in the outer layers of the ejecta.
Synthetic spectra generated with the parameterized supernova synthetic-spectrum code SYNOW are compared to observed photospheric-phase spectra of the Type Ic supernova 1994I. The observed optical spectra can be well matched by synthetic spectra that
SN 1998bw holds the record for the most energetic Type Ic explosion, one of the brightest radio supenovae and probably the first supernova associated with a gamma-ray burst. In this paper we present spectral observations of SN 1998bw observed in a co
We report our attempts to locate the progenitor of the peculiar type Ic SN 2007gr in HST pre-explosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini (North) Telescope with the pre-explo
Photometric and spectral evolution of the Type Ic supernova SN 2007ru until around 210 days after maximum are presented. The spectra show broad spectral features due to very high expansion velocity, normally seen in hypernovae. The photospheric veloc
Core-collapse supernovae (SNe), marking the deaths of massive stars, are among the most powerful explosions in the Universe, responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are