ﻻ يوجد ملخص باللغة العربية
The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005); astro-ph/0507439] claims that heavy nuclei could have been produced in a combined p- and r-process in very high baryon density regions of an inhomogeneous big bang. However, they do not account for observational constraints and previous studies which show that such high baryon density regions did not significantly contribute to big bang abundances.
We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set b
We consider inhomogeneous big bang nucleosynthesis in light of the present observational situation. Different observations of He-4 and D disagree with each other, and depending on which set of observations one uses, the estimated primordial He-4 corr
I review standard big bang nucleosynthesis and so
We report the results of a new accurate evaluation of light nuclei yields in primordial nucleosynthesis. All radiative effects, finite nucleon mass, thermal and plasma corrections are included in the proton to neutron conversion rates. The relic dens
We study dynamical screening effects of nuclear charge on big bang nucleosynthesis (BBN). A moving ion in plasma creates a distorted electric potential leading to a screening effect which is different from the standard static Salpeter formula. We con