ﻻ يوجد ملخص باللغة العربية
New SiO multi-transition millimetre line observations of a sample of carbon stars, including J=8-7 observations with the APEX telescope, are used to probe the role of non-equilibrium chemistry and the influence of grains in circumstellar envelopes of carbon stars. A detailed radiative transfer modelling, including the effect of dust emission in the excitation analysis, of the observed SiO line emission is performed. A combination of low- and high-energy lines are important in constraining the abundance distribution. It is found that the fractional abundance of SiO in these C-rich environments can be several orders of magnitude higher than predicted by equilibrium stellar atmosphere chemistry. In fact, the SiO abundance distribution of carbon stars closely mimic that of M-type (O-rich) AGB stars. A possible explanation for this behaviour is a shock-induced chemistry, but also the influence of dust grains, both as a source for depletion as well as production of SiO, needs to be further investigated. As observed for M-type AGB stars, a clear trend that the SiO fractional abundance decreases as the mass-loss rate of the star increases is found for the carbon stars. This indicates that SiO is accreted onto dust grains in the circumstellar envelopes.
(abridged) Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. We have analysed molecular transitions of CO, SiO, and HCN measured with the AP
For the first time we explore the circumstellar effects on the Rb (and Zr) abundance determination in O-rich asymptotic giant branch (AGB) stars by considering the presence of a gaseous circumstellar envelope with a radial wind. A modified version of
We have performed high spatial resolution observations of SiO line emission for a sample of 11 AGB stars using the ATCA, VLA and SMA interferometers. Detailed radiative transfer modelling suggests that there are steep chemical gradients of SiO in the
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our rec
We previously explored the circumstellar effects on the Rb and Zr abundances in massive Galactic O-rich AGB stars. Here we are interested in the role of the extended atmosphere in the case of Li and Ca. Li is an important indicator of HBB while the t