ﻻ يوجد ملخص باللغة العربية
We review the properties of low mass dense molecular cloud cores, including starless, prestellar, and Class 0 protostellar cores, as derived from observations. In particular we discuss them in the context of the current debate surrounding the formation and evolution of cores. There exist several families of model scenarios to explain this evolution (with many variations of each) that can be thought of as a continuum of models lying between two extreme paradigms for the star and core formation process. At one extreme there is the dynamic, turbulent picture, while at the other extreme there is a slow, quasi-static vision of core evolution. In the latter view the magnetic field plays a dominant role, and it may also play some role in the former picture. Polarization and Zeeman measurements indicate that some, if not all, cores contain a significant magnetic field. Wide-field surveys constrain the timescales of the core formation and evolution processes, as well as the statistical distribution of core masses. The former indicates that prestellar cores typically live for 2--5 free-fall times, while the latter seems to determine the stellar initial mass function. In addition, multiple surveys allow one to compare core properties in different regions. From this it appears that aspects of different models may be relevant to different star-forming regions, depending on the environment. Prestellar cores in cluster-forming regions are smaller in radius and have higher column densities, by up to an order of magnitude, than isolated prestellar cores. This is probably due to the fact that in cluster-forming regions the prestellar cores are formed by fragmentation of larger, more turbulent cluster-forming cores, which in turn form as a result of strong external compression.
Low-mass dense cores represent the state of molecular gas associated with the earliest phases of low-mass star formation. Such cores are called protostellar or starless, depending on whether they do or do not contain compact sources of luminosity. In
The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribut
We present a possible identification strategy for first hydrostatic core (FHSC) candidates and make predictions of ALMA dust continuum emission maps from these objects. We analyze the results given by the different bands and array configurations and
We present deep Hubble Space Telescope (HST) NICMOS 2 F160W band observations of the central 56*57 (14pc*14.25pc) region around R136 in the starburst cluster 30 Dor (NGC 2070) located in the Large Magellanic Cloud. Our aim is to derive the stellar In
NGC 6611 is the massive young cluster (2-3 Myr) that ionises the Eagle Nebula. We present very deep photometric observations of the central region of NGC 6611 obtained with the Hubble Space Telescope and the following filters: ACS/WFC F775W and F850L