ترغب بنشر مسار تعليمي؟ اضغط هنا

The SAURON project - VII. Integral-field absorption and emission-line kinematics of 24 spiral galaxy bulges

108   0   0.0 ( 0 )
 نشر من قبل Jesus Falcon-Barroso
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present observations of the stellar and gas kinematics for a representative sample of 24 Sa galaxies obtained with our custom-built integral-field spectrograph SAURON operating on the William Herschel Telescope. Our maps typically cover the bulge dominated region. We find a significant fraction of kinematically decoupled components (12/24), many of them displaying central velocity dispersion minima. They are mostly aligned and co-rotating with the main body of the galaxies, and are usually associated with dust discs and rings detected in unsharp-masked images. Almost all the galaxies in the sample (22/24) contain significant amounts of ionised gas which, in general, is accompanied by the presence of dust. The kinematics of the ionised gas is consistent with circular rotation in a disc co-rotating with respect to the stars. The distribution of mean misalignments between the stellar and gaseous angular momenta in the sample suggest that the gas has an internal origin. The [OIII]/Hbeta ratio is usually very low, indicative of current star formation, and shows various morphologies (ring-like structures, alignments with dust lanes or amorphous shapes). The star formation rates in the sample are comparable with that of normal disc galaxies. Low gas velocity dispersion values appear to be linked to regions of intense star formation activity. We interpret this result as stars being formed from dynamically cold gas in those regions. In the case of NGC5953, the data suggest that we are witnessing the formation of a kinematically decoupled component from cold gas being acquired during the ongoing interaction with NGC5954.



قيم البحث

اقرأ أيضاً

We present the stellar kinematics of 48 representative elliptical and lenticular galaxies obtained with our custom-built integral-field spectrograph SAURON operating on the William Herschel Telescope. The data were homogeneously processed through a d edicated reduction and analysis pipeline. All resulting SAURON datacubes were spatially binned to a constant minimum signal-to-noise. We have measured the stellar kinematics with an optimized (penalized pixel-fitting) routine which fits the spectra in pixel space, via the use of optimal templates, and prevents the presence of emission lines to affect the measurements. We have thus generated maps of the mean stellar velocity, the velocity dispersion, and the Gauss-Hermite moments h3 and h4 of the line-of-sight velocity distributions. The maps extend to approximately one effective radius. Many objects display kinematic twists, kinematically decoupled components, central stellar disks, and other peculiarities, the nature of which will be discussed in future papers of this series.
We present the emission-line fluxes and kinematics of 48 representative elliptical and lenticular galaxies obtained with our custom-built integral-field spectrograph SAURON. Hb, [OIII], and [NI] emission lines were measured using a new procedure that simultaneously fits both the stellar spectrum and the emission lines. Using this technique we can detect emission lines down to an equivalent width of 0.1A set by the current limitations in describing galaxy spectra with synthetic and real stellar templates, rather than by the quality of our spectra. Emission is detected in 75% of our sample galaxies, and comes in a variety of resolved spatial distributions and kinematic behaviours. The ionised-gas kinematics is rarely consistent with simple coplanar circular motions. However, the gas almost never displays completely irregular kinematics, generally showing coherent motions with smooth variations in angular momentum. In the majority of the cases the gas kinematics is decoupled from the stellar kinematics, and in half of the objects this decoupling implies a recent acquisition of gaseous material. Over the entire sample however, the distribution of the mean misalignment values between stellar and gaseous angular momenta is inconsistent with a purely external origin. Consistent with previous studies, the presence of dust features is always accompanied by gas emission while the converse is not always true. A considerable range of values for the [OIII]/Hb ratio is found both across the sample and within single galaxies. Despite the limitations of this ratio as an emission-line diagnostic, this finding suggests either that a variety of mechanisms is responsible for the gas excitation in E and S0 galaxies or that the metallicity of the interstellar material is quite heterogeneous.
We present absorption line strength maps of a sample of 24 representative early-type spiral galaxies, mostly of type Sa, obtained as part of the SAURON survey of nearby galaxies using our custom-built integral-field spectrograph. Using high-quality s pectra, spatially binned to a constant signal-to-noise, we measure several key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a contiguous two-dimensional field including bulge and inner disc. We present maps of H beta, Fe 5015 and Mg b, for each galaxy The absorption line maps show that many galaxies contain some younger populations (<= 1 Gyr), distributed in small or large inner discs, or in circumnuclear star forming rings. In many cases these young stars are formed in circumnuclear mini-starbursts, which are dominating the light in the centres of some of the early-type spirals. These mini-starburst cause a considerable scatter in index-index diagrams such as Mg b- H beta and Mg b -Fe 5015, more than is measured for early-type galaxies. We find that the central regions of Sa galaxies display a wide range in ages, even within the galaxies. 50% of the sample show velocity dispersion drops in their centres. All of the galaxies of our sample lie on or below the Mg b- $sigma$ relation for elliptical galaxies in the Coma cluster, and above the H beta absorption line - $sigma$ relation for elliptical galaxies. If those relations are considered to be relations for the oldest local galaxies we see that our sample of spirals has a considerable scatter in age, with the largest scatter at the lowest $sigma$. This is in disagreement with highly inclined samples, in which generally only old stellar populations are found in the central regions. All this can be understood if ... (see paper for rest of abstract)
We have obtained Integral Field Spectroscopy for 23 spiral bulges using INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian Telescope. This is the first 2D survey directed solely at the bulges of spiral galaxies. Eleven gala xies of the sample do not have previous measurements of the stellar velocity dispersion (sigma*). These data are designed to complement our Space Telescope Imaging Spectrograph program for estimating black hole masses in the range 10^6-10^8M_sun using gas kinematics from nucleated disks. These observations will serve to derive the stellar dynamical bulge properties using the traditional Mgb and CaII triplets. We use both Cross Correlation and Maximum Penalized Likelihood to determine projected sigma* in these systems and present radial velocity fields, major axis rotation curves, curves of growth and sigma* fields. Using the Cross Correlation to extract the low order 2D stellar dynamics we generally see coherent radial rotation and irregular velocity dispersion fields suggesting that sigma* is a non-trivial parameter to estimate.
We present high spatial resolution integral-field spectroscopy of 28 elliptical (E) and lenticular (S0) galaxies from the SAURON representative survey obtained with the OASIS spectrograph during its operation at the CFHT. These seeing-limited observa tions explore the central 8x10 (typically one kiloparsec diameter) regions of these galaxies using a spatial sampling four times higher than SAURON (0.27 vs. 0.94 spatial elements), resulting in almost a factor of two improvement in the median PSF. These data allow accurate study of the central regions to complement the large-scale view provided by SAURON. Here we present the stellar and gas kinematics, stellar absorption-line strengths and nebular emission-line strengths for this sample. We also characterise the stellar velocity maps using the kinemetry technique, and derive maps of the luminosity-weighted stellar age, metallicity and abundance ratio via stellar population models. We give a brief review of the structures found in our maps, linking also to larger-scale structures measured with SAURON. We present two previously unreported kinematically-decoupled components (KDCs) in the centres of NGC3032 and NGC4382. We compare the intrinsic size and luminosity-weighted stellar age of all the visible KDCs in the full SAURON sample, and find two types of components: kiloparsec-scale KDCs, which are older than 8 Gyr, and are found in galaxies with little net rotation; and compact KDCs, which have intrinsic diameters of less than a few hundred parsec, show a range of stellar ages from 0.5 - 15 Gyr (with 5/6 younger than 5 Gyr), are found exclusively in fast-rotating galaxies, and are close to counter-rotating around the same axis as their host. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا