ﻻ يوجد ملخص باللغة العربية
Observational evidence accumulated over the past decade indicates that accretion discs in X-ray binaries are viscously stable unless they accrete very close to the Eddington limit. This is at odds with the most basic standard accretion disc theory, but could be explained by either having the discs to be much cooler whereby they are not radiation pressure dominated, or by a more sophisticated viscosity law. Here we argue that the latter is taking place in practice, on the basis of a stability analysis that assumes that the magneto-rotational-instability (MRI) responsible for generating the turbulent stresses inside the discs is also the source for a magnetically dominated corona. We show that observations of stable discs in the high/soft states of black hole binaries, on the one hand, and of the strongly variable microquasar GRS 1915+105 on the other, can all be explained if the magnetic turbulent stresses inside the disc scale proportionally to the geometric mean of gas and total pressure with a constant of proportionality (viscosity parameter) having a value of a few times 10^{-2}. Implications for bright AGN are also briefly discussed
We examine the properties of strongly magnetized accretion discs in a global framework, with particular focus on the evolution of magnetohydrodynamic instabilities such as the magnetorotational instability (MRI). Work by Pessah and Psaltis showed tha
Although the Eddington limit has originally been derived for stars, recently its relevance for the evolution of accretion discs has been realized. We discuss the question whether the classical Eddington limit - which has been applied globally for alm
Standard accretion disc model relies upon several assumptions, the most important of which is geometrical thinness. Whenever this condition is violated, new physical effects become important such as radial energy advection and mass loss from the disc
(Abridged) We analyse the stability and evolution of power-law accretion disc models. These have midplane densities that follow radial power-laws, and have either temperature or entropy distributions that are power-law functions of cylindrical radius
Origin of hydrodynamical instability and turbulence in the Keplerian accretion disc as well as similar laboratory shear flows, e.g. plane Couette flow, is a long standing puzzle. These flows are linearly stable. Here we explore the evolution of pertu