ترغب بنشر مسار تعليمي؟ اضغط هنا

A Keck/DEIMOS Spectroscopy of Lyman Alpha Blobs at Redshift z=3.1

75   0   0.0 ( 0 )
 نشر من قبل Yuichi Matsuda
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuichi Matsuda




اسأل ChatGPT حول البحث

We present the results of an intermediate resolution (~2 angstrom) spectroscopy of a sample of 37 candidate Lyman alpha blobs and emitters at redshift z=3.1 using the DEIMOS spectrograph on the 10 m Keck telescope. The emission lines are detected for all the 37 objects and have variety in their line profiles. The Lyman alpha velocity widths (FWHM) of the 28 objects with higher quality spectra, measured by fitting a single Gaussian profile, are in the range of 150 - 1700 km/s and correlate with the Lyman alpha spatial extents. All the 12 Lyman alpha blobs (>16 arcsec^2) have large velocity widths of > 500 km/s. While there are several possible physical interpretations of the Lyman alpha velocity widths (motion of gravitationally-bound gas clouds, inflows, merging of clumps, or outflows from superwinds), the large velocity widths of the Lyman alpha blobs suggest that they are the sites of massive galaxy formation. If we assume gravitationally-bound gas clouds, the dynamical masses of the Lyman alpha blobs are estimated to be ~10^12 - 10^13 Msun. Even for the case of outflows, the outflow velocities are likely to be the same order of the rotation velocities as inferred from the observational evidence for local starburst galaxies.



قيم البحث

اقرأ أيضاً

130 - Y. Ohyama 2003
We present deep optical spectroscopy of an extended Ly$alpha$ emission-line blob located in an over-dense region at redshift $z approx 3.1$; `blob 1 of Steidel et al. (2000). The origin of such Ly$alpha$ blobs has been debated for some time; two of t he most plausible models are (1) that it comes from a dust-enshrouded, extreme starburst galaxy with a large-scale galactic outflow (superwind/hyperwind) or (2) that it is the cooling radiation of proto-galaxies in dark matter halos. Examination of the kinematic properties of the Ly$alpha$ emission-line gas should allow us to determine its nature. With this motivation, we performed optical spectroscopy of `blob 1 using the Subaru Telescope, and found that its kinematic properties can be well explained in terms of superwind activity.
We present the results of the extensive narrow-band survey of Lyalpha emission-line objects at z=3.1 in the 1.38 deg^2 area surrounding the high density region of star-forming galaxies at z=3.09 in the SSA22 field, as well as in the 1.04 deg^2 area o f the three separated general blank fields. In total of 2161 Lyalpha emitters, 1394 in the SSA22 fields and 767 in the general fields, respectively, are detected to the narrow-band AB magnitude limit of 25.73, which corresponds to the line flux of 1.8 x 10^{-17} erg s^{-1} cm^{-2} or luminosity of 1.5 x 10^{42} erg s^{-1} at z=3.1, above the observed equivalent width threshold, 190AA . The average surface number density of the emitters at z=3.1 in the whole general fields above the thresholds is 0.20+-0.01 arcmin^{-2}. The SSA22 high-density region at z=3.09 whose peak local density is 6 times the average is found to be the most prominent outstanding structure in the whole surveyed area and is firmly identified as a robust `protocluster with the enough large sample. We also compared the overdensity of the 100 arcmin^2 and 700 arcmin^2 areas which contain the protocluster with the expected fluctuation of the dark matter as well as those of the model galaxies in cosmological simulations. We found that the peak height values of the overdensity correspond to be 8-10 times and 3-4 times of the expected standard deviations of the counts of Lyalpha emitters at z=3.1 in the corresponding volume, respectively. We conclude that the structure at z=3.09 in the SSA22 field is a very significant and rare density peak up to the scale of 60 Mpc.
We report the properties of the 35 robust candidates of Ly-alpha blobs (LABs), which are larger than 16 arcsec^2 in isophotal area and brighter than 0.7 x 10^-16 ergs s^-1 cm^-2, searched in and around the proto-cluster region at redshift z=3.1 disco vered by Steidel et al. in the SSA22 field, based on wide-field (31x23) and deep narrow-band (NB497; 4977/77) and broad-band (B,V, and R) images taken with the prime-focus camera on the Subaru telescope. The two previously known giant LABs are the most luminous and the largest ones in our survey volume of 1.3 x 10^5 Mpc^3. We revealed the internal structures of the two giant LABs and discovered some bubble-like features, which suggest that intensive starburst and galactic superwind phenomena occurred in these objects in the past. The rest 33 LABs have isophotal area of about 16-78 arcsec^2 and flux of 0.7-7 x 10^-16 ergs s^-1 cm^-2. These 35 LABs show a continuous distribution of isophotal area and emission line flux. The distributions of average surface brightness and morphology are widespread from relatively compact high surface brightness objects to very diffuse low surface brightness ones. The physical origins of these LABs may be (i) photo-ionization by massive stars, or active galactic nuclei, or (ii) cooling radiation from gravitationally heated gas, or (iii) shock heating by starburst driven galactic superwind. One third of them are apparently not associated with ultra-violet continuum sources that are bright enough to produce Ly-alpha emission, assuming a Salpeter initial mass function. The 90% of these LABs are located inside the high surface density region of the 283 relatively compact and strong Ly-alpha emitters selected in our previous study. This suggests that these LABs may be the phenomena related to dense environment at high redshift.
188 - Y. Matsuda 2009
We present the discovery of a candidate of giant radio-quiet Lyman-alpha (Lya) blob (RQLAB) in a large-scale structure around a high-redshift radio galaxy (HzRG) lying in a giant Lya halo, B3 J2330+3927 at redshift z=3.087. We obtained Lya imaging ar ound B3 J2330+3927 with Subaru/Suprime-Cam to search for Lya emitters (LAEs) and absorbers (LAAs) at redshift z=3.09+-0.03. We detected candidate 127 LAEs and 26 LAAs in the field of view of 31 x 24. We found that B3 J2330+3927 is surrounded by a 130 kpc Lya halo and a large-scale (60 x 20 comoving Mpc) filamentary structure. The large-scale structure contains one prominent local density peak with an overdensity of greater than 5, which is 8 (15 comoving Mpc) away from B3 J2330+3927. In this peak, we discovered a candidate 100 kpc RQLAB. The existence of both types of Lya nebulae in the same large-scale structure suggests that giant Lya nebulae need special large-scale environments to form. On smaller scales, however, the location of B3 J2330+3927 is not a significant local density peak in this structure, in contrast to the RQLAB. There are two possible interpretations of the difference of the local environments of these two Lya nebulae. Firstly, RQLAB may need a prominent (delta ~ 5) density peak of galaxies to form through intense star-bursts due to frequent galaxy interactions/mergers and/or continuous gas accretion in an overdense environment. On the other hand, Lya halo around HzRG may not always need a prominent density peak to form if the surrounding Lya halo is mainly powered by its radio and AGN activities. Alternatively, both RQLAB and Lya halo around HzRG may need prominent density peaks to form but we could not completely trace the density of galaxies because we missed evolved and dusty galaxies in this survey.
Ly-alpha blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly -alpha emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold gas streaming on to a central galaxy, providing an opportunity to directly observe the `cold accretion mode of galaxy growth. Star-forming galaxies in LABs could be dust obscured and therefore detectable only at longer wavelengths. We stack deep SCUBA-2 observations of the SSA22 field to determine the average 850um flux density of 34 LABs. We measure S_850 = 0.6 +/- 0.2mJy for all LABs, but stacking the LABs by size indicates that only the largest third (area > 1794 kpc^2) have a mean detection, at 4.5 sigma, with S_850 = 1.4 +/- 0.3mJy. Only two LABs (1 and 18) have individual SCUBA-2 > 3.5 sigma detections at a depth of 1.1mJy/beam. We consider two possible mechanisms for powering the LABs and find that central star formation is likely to dominate the emission of Ly-alpha, with cold accretion playing a secondary role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا