ﻻ يوجد ملخص باللغة العربية
We investigate the quantity and composition of unburned material in the outer layers of three normal Type Ia supernovae (SNe Ia): 2000dn, 2002cr and 20 04bw. Pristine matter from a white dwarf progenitor is expected to be a mixture of oxygen and carbon in approximately equal abundance. Using near-infrared (NIR, 0.7-2.5 microns) spectra, we find that oxygen is abundant while carbon is severely depleted with low upper limits in the outer third of the ejected mass. Strong features from the OI line at rest wavelength = 0.7773 microns are observed through a wide range of expansion velocities approx. 9,000 - 18,000 km/s. This large velocity domain corresponds to a physical region of the supernova with a large radial depth. We show that the ionization of C and O will be substantially the same in this region. CI lines in the NIR are expected to be 7-50 times stronger than those from OI but there is only marginal evidence of CI in the spectra and none of CII. We deduce that for these three normal SNe Ia, oxygen is more abundant than carbon by factors of 100 - 1,000. MgII is also detected in a velocity range similar to that of OI. The presence of O and Mg combined with the absence of C indicates that for these SNe Ia, nuclear burning has reached all but the extreme outer layers; any unburned material must have expansion velocities greater than 18,000 km/s. This result favors deflagration to detonation transition (DD) models over pure deflagration models for SNe Ia.
While O is often seen in spectra of Type Ia supernovae (SNe Ia) as both unburned fuel and a product of C burning, C is only occasionally seen at the earliest times, and it represents the most direct way of investigating primordial white dwarf materia
Among the major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae are the companion star of the accreting white dwarf (or the accretion rate that determines the carbon ignition density) and the flame speed after ignition.
Supernova (SN) rates are a potentially powerful diagnostic of star formation history (SFH), metal enrichment, and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials, and simple SFH. However, a low-redshift cluster
The carbon-oxygen white dwarf (CO WD) + He star channel has been thought to be one of the promising scnarios to produce young type Ia supernovae (SNe Ia). Previous studies found that if the mass-accretion rate is greater than a critical value, the He
The standard cosmology strongly relies upon the Cosmological Principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations