ترغب بنشر مسار تعليمي؟ اضغط هنا

The correlations between the twin kHz QPO frequencies of LMXBs

227   0   0.0 ( 0 )
 نشر من قبل Chengmin Zhang
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed the recently published kHz QPO data in the neutron star low-mass X-ray binaries (LMXBs), in order to investigate the different correlations of the twin peak kilohertz quasi-eriodic oscillations (kHz QPOs) in bright Z sources and in the less luminous Atoll sources. We find that a power-law relation $ osim t^{b}$ between the upper and the lower kHz QPOs with different indices: $bsimeq$1.5 for the Atoll source 4U 1728-34 and $bsimeq$1.9 for the Z source Sco X-1. The implications of our results for the theoretical models for kHz QPOs are discussed.



قيم البحث

اقرأ أيضاً

292 - D.H. Wang , L. Chen , C.M. Zhang 2013
We collect the data of twin kilohertz quasi-periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low-mass X-ray binary (LMXB) sources, then we analyze the centroid frequency ( u) distribution of twin kHz QPOs (lower freque ncy u_1 and upper frequency u_2) both for Atoll and Z sources. For the data without shift-and-add, we find that Atoll and Z sources show the different distributions of u_1, u_2 and u_2/ u_1, but the same distribution of Delta u (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Delta u is quite different from constant value, so is u_2/ u_1 from constant ratio. The weighted mean values and maxima of u_1 and u_2 in Atoll sources are slightly higher than those in Z sources. We also find that shift-and-add technique can reconstruct the distribution of u_1 and Delta u. The K-S test results of u_1 and Delta u between Atoll and Z sources from data with shift-and-add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root-mean-squared (rms) amplitude of 4U 0614+09 with the data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency ( u_s) distribution of 28 NS-LMXBs show a bigger mean value (about 408Hz) than that (about 281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency u_s, we find the approximate correlations of the mean values of Delta u with NS spin and its half, respectively.
321 - H.X. Yin , C.M. Zhang , Y.H. Zhao 2007
We studied the correlations between spin frequencies and kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries. The updated data of kHz QPOs and spin frequencies are statistically analyzed. We found that when two si multaneous kHz QPOs are present in the power spectrum, the minimum frequency of upper kHz QPO is at least 1.3 times larger than the spin frequency, i.e. u_{s}< u_{2min}/1.3. We also found that the average kHz QPO peak separation in 6 Atoll sources anti-correlates with the spin frequency in the form landnran = -(0.19pm0.05) s+(389.40pm21.67)Hz. If we shifted this correlation in the direction of the peak separation by a factor of 1.5, this correlation matches the data points of the two accretion powered millisecond X-ray pulsars, SAX J1808.4-3658 and XTE J1807-294.
73 - Mariano Mendez 2002
Contrary to theoretical expectations, observations with the Rossi X-ray Timing Explorer (RXTE) show that in X-ray binaries timing properties are not uniquely correlated with X-ray luminosity. For instance, although the frequencies of the kilohertz qu asi-periodic oscillations (kHz QPOs) correlate with X-ray flux on short (~few hours) time scales, on time scales longer than a day the QPO appears at more or less the same frequency, whereas the luminosity may be a factor of a few different. The result is a set of almost parallel tracks in a QPO frequency vs. X-ray flux plot. Despite the parallel tracks are a common phenomenon among kHz QPO sources, until now, after five years of observations with RXTE, not a single transition between two of these tracks had been seen. Here I present the first detection of such a transition, in 4U 1636-53.
We discovered kHz QPOs in 80 archived RXTE observations from the peculiar low-mass X-ray binary (LMXB) Circinus X-1. In 11 cases these appear in pairs in the frequency range of ~230 Hz to ~500 Hz for the upper kHz QPO and ~56 Hz to ~225 Hz for the lo wer kHz QPO. Their correlation with each other, which is similar to that of frequencies of kHz QPO pairs in other LMXBs containing a neutron star, and their variation by a factor two confirm that the central object is a neutron star. These are the lowest frequencies of kHz QPO pairs discovered so far and extend the above correlation over a frequency range of factor four. In this new frequency range the frequency difference of the two kHz QPOs increases monotonically by more than ~170 Hz with increasing kHz QPO frequency, challenging theoretical models.
Double peak kHz QPO frequencies in neutron star sources varies in time by a factor of hundreds Hz while in microquasar sources the frequencies are fixed and located at the line u_2 = 1.5 u_1 in the frequency-frequency plot. The crucial question in the theory of twin HFQPOs is whether or not those observed in neutron-star systems are essentially different from those observed in black holes. In black hole systems the twin HFQPOs are known to be in a 3:2 ratio for each source. At first sight, this seems not to be the case for neutron stars. For each individual neutron star, the upper and lower kHz QPO frequencies, u_2 and u_1, are linearly correlated, u_2=A u_1 + B, with the slope A < 1.5, i.e., the frequencies definitely are not in a 1.5 ratio. In this contribution we show that when considered jointly on a frequency-frequency plot, the data for the twin kHz QPO frequencies in several (as opposed to one) neutron stars uniquely pick out a certain preferred frequency ratio that is equal to 1.5 for the six sources examined so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا