ترغب بنشر مسار تعليمي؟ اضغط هنا

A radial velocity survey of low Galactic latitude structures: III. The Monoceros Ring in front of the Carina and Andromeda galaxies

89   0   0.0 ( 0 )
 نشر من قبل Nicolas Martin
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of our radial velocity survey of low Galactic latitude structures that surround the Galactic disc, we report the detection of the so called Monoceros Ring in the foreground of the Carina dwarf galaxy at Galactic coordinates (l,b)=(260,-22) based on VLT/FLAMES observations of the dwarf galaxy. At this location, 20 degrees in longitude greater than previous detections, the Ring has a mean radial velocity of 145+/-5 km/s and a velocity dispersion of only 17+/-5 km/s. Based on Keck/DEIMOS observations, we also determine that the Ring has a mean radial velocity of -75+/-4 km/s in the foreground of the Andromeda galaxy at (l,b)sim(122,-22), along with a velocity dispersion of 26+/-3 km/s. These two kinematic detections are both highly compatible with known characteristics of the structure and, along with previous detections provide radial velocity values of the Ring over the 120<l<260 range. This should add strong constraints on numerical models of the accretion of the dwarf galaxy that is believed to be the progenitor of the Ring.



قيم البحث

اقرأ أيضاً

As part of a radial velocity survey of low Galactic latitude structures that we undertook with the 2dF spectrograph on the AAT, we present the radial velocities of more than 1500 Red Giant Branch and Red Clump stars towards the centre of the Canis Ma jor dwarf galaxy. With a mean velocity of 72pm7 km/s at a Heliocentric distance of 5.5 kpc and 114pm2 km/s at 8.5 kpc, these stars present a peculiar distance -- radial velocity relation that is unlike that expected from thin or thick disc stars. Moreover, they belong to a kinematically cold population with an intrinsic dispersion that may be as low as 11_{-1}^{+3} km/s. The radial velocity distribution is used to select Canis Major stars in the UCAC2.0 proper motion catalogue and derive proper motions in Galactic coordinates of (mu_l,mu_b)= (-3.6pm0.8 mas/yr, 1.5pm0.4 mas/yr) for the dwarf galaxy, which after correcting for the reflex solar motion along this line-of-sight gives (mu_l,mu_b)= (-6.8pm0.8 mas/yr, 0.8pm0.4 mas/yr)$, corresponding to a prograde orbit with a tangential velocity of sim235 km/s at the average distance of sim7.2 kpc. All these kinematic constraints can be reproduced in simulations of the accretion of a dwarf onto the Galactic disc. Such a process could also be responsible for the Monoceros Ring that has recently been shown to encompass the Galactic disc. However, without constraints on the kinematics of the tidal arms emerging from the Canis Major dwarf, it is not yet possible to definitively prove a link between the two structures.
We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotat ional velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.
Thanks to modern sky surveys, over twenty stellar streams and overdensity structures have been discovered in the halo of the Milky Way. In this paper, we present an analysis of spectroscopic observations of individual stars from one such structure, A 13, first identified as an overdensity using the M giant catalog from the Two Micron All-Sky Survey. Our spectroscopic observations show that stars identified with A13 have a velocity dispersion of $lesssim$ 40 $mathrm{km~s^{-1}}$, implying that it is a genuine coherent structure rather than a chance super-position of random halo stars. From its position on the sky, distance ($sim$15~kpc heliocentric), and kinematical properties, A13 is likely to be an extension of another low Galactic latitude substructure -- the Galactic Anticenter Stellar Structure (also known as the Monoceros Ring) -- towards smaller Galactic longitude and farther distance. Furthermore, the kinematics of A13 also connect it with another structure in the southern Galactic hemisphere -- the Triangulum-Andromeda overdensity. We discuss these three connected structures within the context of a previously proposed scenario that one or all of these features originate from the disk of the Milky Way.
We present the results of deep imaging obtained at the CFHT with MegaCam in the Anticenter direction at two different heights above the Galactic disk. We detect the presence of the Monoceros ring in both fields as a conspicuous and narrow Main Sequen ce feature which dominates star counts over a large portion of the color-magnitude diagram down to g~24. The comparison of the morphology and density of this feature with a large variety of Galactic models excludes the possibility that it can be due to a flare of the Galactic disk, supporting an extra-Galactic origin for this ring-like structure.
Saturns ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation. At low latitudes the latter should result in a weak planet-wide glow in infrared (IR), corresponding to the p lanets uniform illumination by the Sun. The observed low-latitude ionospheric electron density is lower and the temperature higher than predicted by models. A planet-ring magnetic connection has been previously suggested in which an influx of water from the rings could explain the lower than expected electron densities in Saturns atmosphere. Here we report the detection of a pattern of features, extending across a broad latitude band from ~25 to 60 degrees, that is superposed on the lower latitude background glow, with peaks in emission that map along the planets magnetic field lines to gaps in Saturns rings. This pattern implies the transfer of charged water products from the ring-plane to the ionosphere, revealing the influx on a global scale, flooding between 30 to 43% of the planets upper-atmospheric surface. This ring `rain plays a fundamental role in modulating ionospheric emissions and suppressing electron densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا